
Application Crash Consistency
and Performance with CCFS

Thanumalayan Sankaranarayana Pillai, Ramnatthan Alagappan, Lanyue Lu,
Vijay Chidambaram, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Storage must be robust even with system crashes
- Power loss (2016 UPS issues: Github outage, Internet outage across UK)
- Kernel bugs

Application-Level Crash Consistency

[source:www.datacenterknowledge.com]

[Lu et al., OSDI 2014, Palix et al., ASPLOS 2011, Chou et al., SOSP 2001]

Storage must be robust even with system crashes
- Power loss (2016 UPS issues: Github outage, Internet outage across UK)
- Kernel bugs

Applications need to implement crash consistency
- E.g., Database applications ensure transactions are atomic

Application-Level Crash Consistency

[source:www.datacenterknowledge.com]

[Lu et al., OSDI 2014, Palix et al., ASPLOS 2011, Chou et al., SOSP 2001]

Storage must be robust even with system crashes
- Power loss (2016 UPS issues: Github outage, Internet outage across UK)
- Kernel bugs

Applications need to implement crash consistency
- E.g., Database applications ensure transactions are atomic

Applications implement crash consistency wrongly
- Pillai et al., OSDI 2014 (11 applications) and Zhou et al., OSDI 2014 (8 databases)
- Conclusion: All applications had some form of incorrectness

Application-Level Crash Consistency

[source:www.datacenterknowledge.com]

[Lu et al., OSDI 2014, Palix et al., ASPLOS 2011, Chou et al., SOSP 2001]

App crash consistency depends on FS behavior
- E.g., Bad FS behavior: 60 vulnerabilities in 11 applications
- Good FS behavior: 10 vulnerabilities in 11 applications

Ordering and Application Consistency

[Pillai et al., OSDI 2014]

App crash consistency depends on FS behavior
- E.g., Bad FS behavior: 60 vulnerabilities in 11 applications
- Good FS behavior: 10 vulnerabilities in 11 applications

FS-level ordering is important for applications
- All writes should (logically) be persisted in their issued order
- Major factor affecting application crash consistency

Ordering and Application Consistency

[Pillai et al., OSDI 2014]

App crash consistency depends on FS behavior
- E.g., Bad FS behavior: 60 vulnerabilities in 11 applications
- Good FS behavior: 10 vulnerabilities in 11 applications

FS-level ordering is important for applications
- All writes should (logically) be persisted in their issued order
- Major factor affecting application crash consistency

Few FS configurations provide FS-level ordering
- Ordering is considered bad for performance

Ordering and Application Consistency

[Pillai et al., OSDI 2014]

Stream abstraction
- Allows FS-level ordering with little performance overhead
- Needs a single, backward-compatible change to user code
- Flexible: More code changes improve performance

In this paper ...

Stream abstraction
- Allows FS-level ordering with little performance overhead
- Needs a single, backward-compatible change to user code
- Flexible: More code changes improve performance

Crash-Consistent File System (CCFS)
- Efficient implementation of stream abstraction on ext4
- High performance similar to ext4
- Noticeably higher crash consistency for applications

In this paper ...

Introduction
Background
Stream API
Crash-Consistent File System
Evaluation
Conclusion

Outline

Each file system behaves differently across a crash
- Little standardization of behavior across crashes

File-System Behavior

Each file system behaves differently across a crash
- Little standardization of behavior across crashes

File-System Behavior

FS Crash Behavior

Atomicity Ordering

Each file system behaves differently across a crash
- Little standardization of behavior across crashes

File-System Behavior

FS Crash Behavior

Atomicity

Effects of a write()
system call atomic on a

system crash?

Ordering
creat(A);

creat(B);

Possible after crash that B
exists, but A does not?

Each file system behaves differently across a crash
- Little standardization of behavior across crashes

File-System Behavior

FS Crash Behavior

Atomicity Ordering

Directory operations
E.g., rename() atomic?

File writes
Entire system call?

Sector-level?

......

Previous work: App crash consistency vs FS behavior

Vulnerabilities Study

[Pillai et al., OSDI 2014]

Previous work: App crash consistency vs FS behavior

“Vulnerability”: Place in application source code that can lead to
inconsistency, depending on FS behavior

Vulnerabilities Study

[Pillai et al., OSDI 2014]

Vulnerabilities Study: Results

Ext2-like FS Btrfs Ext3-DJ
LevelDB-1.10 10 4 1
LevelDB-1.15 6 3 1
LMDB 1
GDBM 5 4 2
HSQLDB 10 4
SQLite-Roll 1 1 1
SQLite-WAL 0
PostgreSQL 1
Git 9 5 2
Mercurial 10 8 3
VMWare 1
HDFS 2 1
ZooKeeper 4 1

Total

60

31

10

Vulnerabilities Study: Results

Ext2-like FS Btrfs Ext3-DJ
LevelDB-1.10 10 4 1
LevelDB-1.15 6 3 1
LMDB 1
GDBM 5 4 2
HSQLDB 10 4
SQLite-Roll 1 1 1
SQLite-WAL 0
PostgreSQL 1
Git 9 5 2
Mercurial 10 8 3
VMWare 1
HDFS 2 1
ZooKeeper 4 1

Total

60

31

10

File systems

Vulnerabilities under safest
application configurationAp

pl
ica

tio
ns

Vulnerabilities Study: Results

Ext2-like FS Btrfs Ext3-DJ
LevelDB-1.10 10 4 1
LevelDB-1.15 6 3 1
LMDB 1
GDBM 5 4 2
HSQLDB 10 4
SQLite-Roll 1 1 1
SQLite-WAL 0
PostgreSQL 1
Git 9 5 2
Mercurial 10 8 3
VMWare 1
HDFS 2 1
ZooKeeper 4 1

Total

60

31

10

 Ordering ✗ ✗ ✔

 Atomicity ✗ ✔ ✔
File-system behavior

Vulnerabilities Study: Results

Ext2-like FS Btrfs Ext3-DJ
LevelDB-1.10 10 4 1
LevelDB-1.15 6 3 1
LMDB 1
GDBM 5 4 2
HSQLDB 10 4
SQLite-Roll 1 1 1
SQLite-WAL 0
PostgreSQL 1
Git 9 5 2
Mercurial 10 8 3
VMWare 1
HDFS 2 1
ZooKeeper 4 1

Total

60

31

10

 Ordering ✗ ✗ ✔

 Atomicity ✗ ✔ ✔ Under FS with few guarantees
of atomicity and ordering, 60
vulnerabilities are exposed

- Serious consequences:
unavailability, data loss

Vulnerabilities Study: Results

Ext2-like FS Btrfs Ext3-DJ
LevelDB-1.10 10 4 1
LevelDB-1.15 6 3 1
LMDB 1
GDBM 5 4 2
HSQLDB 10 4
SQLite-Roll 1 1 1
SQLite-WAL 0
PostgreSQL 1
Git 9 5 2
Mercurial 10 8 3
VMWare 1
HDFS 2 1
ZooKeeper 4 1

Total

60

31

10

 Ordering ✗ ✗ ✔

 Atomicity ✗ ✔ ✔ Under btrfs, with atomicity
but lots of re-ordering, 31
vulnerabilities

- Serious consequences

Repository corruption

Unavailability

Vulnerabilities Study: Results

Ext2-like FS Btrfs Ext3-DJ
LevelDB-1.10 10 4 1
LevelDB-1.15 6 3 1
LMDB 1
GDBM 5 4 2
HSQLDB 10 4
SQLite-Roll 1 1 1
SQLite-WAL 0
PostgreSQL 1
Git 9 5 2
Mercurial 10 8 3
VMWare 1
HDFS 2 1
ZooKeeper 4 1

Total

60

31

10

 Ordering ✗ ✗ ✔

 Atomicity ✗ ✔ ✔ Under data-journaled ext3,
with both atomicity and
ordering, 10 vulnerabilities

- Minor consequences

Dirstate corruption

Documentation error

Ideal behavior: Ordering, “weak atomicity”
- All file system updates should be persisted in-order
- Writes can split at sector boundary; everything else atomic

Real-world vs Ideal FS behavior

Ideal behavior: Ordering, “weak atomicity”
- All file system updates should be persisted in-order
- Writes can split at sector boundary; everything else atomic

Modern file systems already provide weak atomicity
- E.g.: Default modes of ext4, btrfs, xfs

Real-world vs Ideal FS behavior

Ideal behavior: Ordering, “weak atomicity”
- All file system updates should be persisted in-order
- Writes can split at sector boundary; everything else atomic

Modern file systems already provide weak atomicity
- E.g.: Default modes of ext4, btrfs, xfs

Only rarely used FS configurations provide ordering
- E.g.: Data-journaling mode of ext4, ext3

Real-world vs Ideal FS behavior

File-system behavior affects application consistency
- Behavior is not standardized
- 60 vulnerabilities with ext2-like FS; 10 with well-behaved FS

Desired behavior: Ordering and weak atomicity
- Weak atomicity already provided by modern file systems
- Ordering provided only by rarely-used FS configurations

Background: Summary

Introduction
Background
Stream API
Crash-Consistent File System
Evaluation
Conclusion

Outline

Some existing file systems preserve order
- Example: ext3 and ext4 under data-journaling mode
- Performance overhead?

Why not use an order-preserving FS?

Some existing file systems preserve order
- Example: ext3 and ext4 under data-journaling mode
- Performance overhead?

New techniques are efficient in maintaining order
- CoW, optimized forms of journaling
- Ordering doesn’t require disk-level seeks

Why not use an order-preserving FS?

Some existing file systems preserve order
- Example: ext3 and ext4 under data-journaling mode
- Performance overhead?

New techniques are efficient in maintaining order
- CoW, optimized forms of journaling
- Ordering doesn’t require disk-level seeks

Reason: False ordering dependencies
- Inherent overhead of ordering, irrespective of technique used

Why not use an order-preserving FS?

Application A Application B

31

False Ordering Dependencies

Application A

pwrite(f1, 0, 150 MB);

Application B

32

Time

1

False Ordering Dependencies

Application A

pwrite(f1, 0, 150 MB);

Application B

write(f2, “hello”);
write(f3, “world”);

33

Time

1

2
3

False Ordering Dependencies

Application A

pwrite(f1, 0, 150 MB);

Application B

write(f2, “hello”);
write(f3, “world”);
fsync(f3);

34

Time

1

2
3
4

False Ordering Dependencies

Application A

pwrite(f1, 0, 150 MB);

Application B

write(f2, “hello”);
write(f3, “world”);
fsync(f3);

35

Time

1

2
3
4

write(f1) has to be sent
to disk before write(f2)

False Ordering Dependencies

In a globally ordered file system ...

Application A

pwrite(f1, 0, 150 MB);

Application B

write(f2, “hello”);
write(f3, “world”);
fsync(f3);

36

Time

1

2
3
4

2 seconds, irrespective
of implementation used
to get ordering!

False Ordering Dependencies

In a globally ordered file system ...

Problem: Ordering between independent applications

Application A

pwrite(f1, 0, 150 MB);

Application B

write(f2, “hello”);
write(f3, “world”);
fsync(f3);

37

Time

1

2
3
4

2 seconds, irrespective
of implementation used
to get ordering!

False Ordering Dependencies

In a globally ordered file system ...

Problem: Ordering between independent applications

Solution: Order only within each application
- Avoids performance overhead, provides app consistency

Application A

pwrite(f1, 0, 150 MB);

Application B

write(f2, “hello”);
write(f3, “world”);
fsync(f3);

38

Time

1

2
3
4

False Ordering Dependencies

New abstraction: Order only within a “stream”
- Each application is usually put into a separate stream

Application A

pwrite(f1, 0, 150 MB);

Application B

write(f2, “hello”);
write(f3, “world”);
fsync(f3);

39

Time

1

2
3
4

Stream Abstraction

stream-B

stream-A

 0.06 seconds

New set_stream() call
- All updates after set_stream(X) associated with stream X
- When process forks, previous stream is adopted

Application A
set_stream(A)
pwrite(f1, 0, 150 MB);

Application B
set_stream(B)

write(f2, “hello”);
write(f3, “world”);
fsync(f3);

40

Time

1

2
3
4

Stream API: Normal Usage

New set_stream() call
- All updates after set_stream(X) associated with stream X
- When process forks, previous stream is adopted

Using streams is easy
- Add a single set_stream() call in beginning of application
- Backward-compatible: set_stream() is no-op in older FSes

41

Stream API: Normal Usage

set_stream() is versatile
- Many applications can be assigned the same stream
- Threads within an application can use different streams
- Single thread can keep switching between streams

42

Stream API: Extended Usage

set_stream() is versatile
- Many applications can be assigned the same stream
- Threads within an application can use different streams
- Single thread can keep switching between streams

Ordering vs durability: stream_sync(), IGNORE_FSYNC flag
- Applications use fsync() for both ordering and durability
- IGNORE_FSYNC ignores fsync(), respects stream_sync()

43

Stream API: Extended Usage

[Chidambaram et al., SOSP2013]

In an ordered FS, false dependencies cause overhead
- Inherent overhead, independent of technique used

Streams provide order only within application
- Writes across applications can be re-ordered for performance
- For consistency, ordering required only within application

Easy to use!

44

Streams: Summary

Introduction
Background
Stream API
Crash-Consistent File System
Evaluation
Conclusion

Outline

“Crash consistent file system”
- Efficient implementation of stream abstraction

CCFS: Design

46

“Crash consistent file system”
- Efficient implementation of stream abstraction

Basic design: Based on ext4 with data-journaling
- Ext4 data-journaling guarantees global ordering
- Ordering across all applications: false dependencies
- CCFS uses separate transactions for each stream

CCFS: Design

47

“Crash consistent file system”
- Efficient implementation of stream abstraction

Basic design: Based on ext4 with data-journaling
- Ext4 data-journaling guarantees global ordering
- Ordering across all applications: false dependencies
- CCFS uses separate transactions for each stream

Multiple challenges

CCFS: Design

48

Ext4 has 1) main-memory structure, “running transaction”,
 2) on-disk journal structure

Ext4 Journaling: Global Order

49

Main memory

On-disk journal

Running transaction

Ext4 Journaling: Global Order

50

1 3Main memory

On-disk journal

Application modifications
recorded in main-memory
running transaction

2 4

Application A
 Modify blocks #1,#3

Running transaction

 Application B

Modify blocks #2,#4

51

Application A
 Modify blocks #1,#3

1 3

Running transaction

Main memory

On-disk journal

On fsync() call, running
transaction “committed” to
on-disk journal

 Application B

Modify blocks #2,#4
fsync()

2 4

Ext4 Journaling: Global Order

52

Application A
 Modify blocks #1,#3

Running transaction

Main memory

On-disk journal

On fsync() call, running
transaction “committed” to
on-disk journal

 Application B

Modify blocks #2,#4
fsync()

Ext4 Journaling: Global Order

1 3 2 4

be
gi

n

en
d

53

Application A
 Modify blocks #1,#3

 Modify blocks #5,#6

Running transaction

Main memory

On-disk journal

Further application writes
recorded in new running
transaction and committed

 Application B

Modify blocks #2,#4
fsync()

Ext4 Journaling: Global Order

1 3 2 4

be
gi

n

en
d

5 6

54

Application A
 Modify blocks #1,#3

 Modify blocks #5,#6

Running transaction

Main memory

On-disk journal

Further application writes
recorded in new running
transaction and committed

 Application B

Modify blocks #2,#4
fsync()

Ext4 Journaling: Global Order

1 3 2 4

be
gi

n

en
d

5 6

55

Application A
 Modify blocks #1,#3

 Modify blocks #5,#6

Running transaction

Main memory

On-disk journal

Further application writes
recorded in new running
transaction and committed

 Application B

Modify blocks #2,#4
fsync()

Ext4 Journaling: Global Order

1 3 2 4

be
gi

n

en
d 5 6

be
gi

n

en
d

56

Running transaction

Main memory

On-disk journal

On system crash, on-disk
journal transactions recovered
atomically, in sequential order

Ext4 Journaling: Global Order

1 3 2 4

be
gi

n

en
d 5 6

be
gi

n

en
d

57

Running transaction

Main memory

On-disk journal

On system crash, on-disk
journal transactions recovered
atomically, in sequential order
Global ordering is maintained!

Ext4 Journaling: Global Order

1 3 2 4

be
gi

n

en
d 5 6

be
gi

n

en
d

58

Application A
 set_stream(A)
 Modify blocks #1,#3

stream-B transaction

Main memory

On-disk journal

CCFS maintains separate running
transaction per stream

 Application B
set_stream(B)

Modify blocks #2,#4

CCFS: Stream Order

stream-A transaction

1 3 2 4

59

Application A
 set_stream(A)
 Modify blocks #1,#3

stream-B transaction

Main memory

On-disk journal

On fsync(), only that stream is
committed

 Application B
set_stream(B)

Modify blocks #2,#4
fsync()

CCFS: Stream Order

stream-A transaction

1 3 2 4

60

Application A
 set_stream(A)
 Modify blocks #1,#3

stream-B transaction

Main memory

On-disk journal

On fsync(), only that stream is
committed

 Application B
set_stream(B)

Modify blocks #2,#4
fsync()

CCFS: Stream Order

stream-A transaction

1 3

2 4

be
gi

n

en
d

61

Application A
 set_stream(A)
 Modify blocks #1,#3

stream-B transaction

Main memory

On-disk journal

Ordering maintained within
stream, re-order across streams!

 Application B
set_stream(B)

Modify blocks #2,#4
fsync()

CCFS: Stream Order

stream-A transaction

1 3

2 4

be
gi

n

en
d

Example: Two streams updating adjoining dir-entries

CCFS: Multiple Challenges

62

Application A
 set_stream(A)
 create(/X/A)

 Application B
set_stream(B)

create(/X/B)

Example: Two streams updating adjoining dir-entries

CCFS: Multiple Challenges

63

Application A
 set_stream(A)
 create(/X/A)

 Application B
set_stream(B)

create(/X/B)Entry-A
Entry-B

Block-1 (belonging to directory X)

Challenge #1: Block-Level Journaling

64

Entry-A
Entry-B

Block-1

stream-B transaction

Main memory

stream-A transaction

? ?

Two independent streams can
update same block!

Application A
 set_stream(A)
 create(/X/A)

 Application B
set_stream(B)

create(/X/B)

Challenge #1: Block-Level Journaling

65

Entry-A
Entry-B

Block-1

stream-B transaction

Main memory

stream-A transaction

? ?

Two independent streams can
update same block!

Application A
 set_stream(A)
 create(/X/A)

 Application B
set_stream(B)

create(/X/B)

Faulty solution: Perform journaling at byte-granularity
- Disables optimizations, complicates disk updates

Challenge #1: Block-Level Journaling

66

stream-B transaction

Main memory

stream-A transaction

CCFS solution:
Record running transactions at
byte granularity

Application A
 set_stream(A)
 create(/X/A)

 Application B
set_stream(B)

create(/X/B)

Entry-A Entry-B

Challenge #1: Block-Level Journaling

67

stream-B transaction

Main memory

stream-A transaction

Application A
 set_stream(A)
 create(/X/A)

 Application B
set_stream(B)

create(/X/B)

Entry-A Entry-B

CCFS solution:
Record running transactions at
byte granularity
Commit at block granularity

On-disk journal

Challenge #1: Block-Level Journaling

68

stream-B transaction

Main memory

stream-A transaction

Application A
 set_stream(A)
 create(/X/A)

 Application B
set_stream(B)

create(/X/B)

Entry-A Entry-B

CCFS solution:
Record running transactions at
byte granularity
Commit at block granularity

On-disk journal be
gi

n

en
d

Entry-B
Entry-A

Entire block-1 committed

Old version
of entry-A

1. Both streams update directory’s modification date
- Solution: Delta journaling

More Challenges ...

69

1. Both streams update directory’s modification date
- Solution: Delta journaling

2. Directory entries contain pointers to adjoining entry
- Solution: Pointer-less data structures

More Challenges ...

70

1. Both streams update directory’s modification date
- Solution: Delta journaling

2. Directory entries contain pointers to adjoining entry
- Solution: Pointer-less data structures

3. Directory entry freed by stream A can be reused by stream B
- Solution: Order-less space reuse

More Challenges ...

71

1. Both streams update directory’s modification date
- Solution: Delta journaling

2. Directory entries contain pointers to adjoining entry
- Solution: Pointer-less data structures

3. Directory entry freed by stream A can be reused by stream B
- Solution: Order-less space reuse

4. Ordering technique: Data journaling cost
- Solution: Selective data journaling [Chidambaram et al., SOSP 2013]

More Challenges ...

72

1. Both streams update directory’s modification date
- Solution: Delta journaling

2. Directory entries contain pointers to adjoining entry
- Solution: Pointer-less data structures

3. Directory entry freed by stream A can be reused by stream B
- Solution: Order-less space reuse

4. Ordering technique: Data journaling cost
- Solution: Selective data journaling [Chidambaram et al., SOSP 2013]

5. Ordering technique: Delayed allocation requires re-ordering
- Solution: Order-preserving delayed allocation

More Challenges ...

73

1. Both streams update directory’s modification date
- Solution: Delta journaling

2. Directory entries contain pointers to adjoining entry
- Solution: Pointer-less data structures

3. Directory entry freed by stream A can be reused by stream B
- Solution: Order-less space reuse

4. Ordering technique: Data journaling cost
- Solution: Selective data journaling [Chidambaram et al., SOSP 2013]

5. Ordering technique: Delayed allocation requires re-ordering
- Solution: Order-preserving delayed allocation

More Challenges ...

74
Details in the paper!

Introduction
Background
Stream API
Crash-Consistent File System
Evaluation
Conclusion

Outline

1. Does CCFS solve application vulnerabilities?
Evaluation

76

1. Does CCFS solve application vulnerabilities?
- Tested five applications: LevelDB, SQLite, Git, Mercurial, ZooKeeper
- Method similar to previous study (ALICE tool) [Pillai et al., OSDI 2014]

- New versions of applications
- Default configuration, instead of safe configuration

Evaluation

77

1. Does CCFS solve application vulnerabilities?
Evaluation

78

Vulnerabilities

Application ext4 ccfs

LevelDB 1 0

SQLite-Roll 0 0

Git 2 0

Mercurial 5 2

ZooKeeper 1 0

1. Does CCFS solve application vulnerabilities?
Evaluation

79

Ext4: 9 Vulnerabilities
- Consistency lost in LevelDB
- Repository corrupted in Git, Mercurial
- ZooKeeper becomes unavailable

Vulnerabilities

Application ext4 ccfs

LevelDB 1 0

SQLite-Roll 0 0

Git 2 0

Mercurial 5 2

ZooKeeper 1 0

1. Does CCFS solve application vulnerabilities?
Evaluation

80

Ext4: 9 Vulnerabilities
- Consistency lost in LevelDB
- Repository corrupted in Git, Mercurial
- ZooKeeper becomes unavailable

CCFS: 2 vulnerabilities in Mercurial
- Dirstate corruption

Vulnerabilities

Application ext4 ccfs

LevelDB 1 0

SQLite-Roll 0 0

Git 2 0

Mercurial 5 2

ZooKeeper 1 0

Evaluation

81

2. Performance within an application
- Do false dependencies reduce performance inside application?
- Or, do we need more than one stream per application?

Evaluation

82

2. Performance within an application

Th
ro

ug
hp

ut
: n

or
m

al
ize

d
to

 e
xt

4
(H

ig
he

r i
s

be
tte

r)

ext4
ccfs

Evaluation

83

2. Performance within an application

Th
ro

ug
hp

ut
: n

or
m

al
ize

d
to

 e
xt

4
(H

ig
he

r i
s

be
tte

r)

ext4
ccfs

Real applicationsStandard benchmarks

Evaluation

84

2. Performance within an application

Th
ro

ug
hp

ut
: n

or
m

al
ize

d
to

 e
xt

4
(H

ig
he

r i
s

be
tte

r)

ext4
ccfs

Standard workloads:
Similar performance
for ext4, ccfs

But ext4 re-orders!

Evaluation

85

2. Performance within an application

Th
ro

ug
hp

ut
: n

or
m

al
ize

d
to

 e
xt

4
(H

ig
he

r i
s

be
tte

r)

ext4
ccfs

Git under ext4 is slow
because of safer
configuration needed
for correctness

Evaluation

86

2. Performance within an application

Th
ro

ug
hp

ut
: n

or
m

al
ize

d
to

 e
xt

4
(H

ig
he

r i
s

be
tte

r)

ext4
ccfs

SQLite and LevelDB :
Similar performance
for ext4, ccfs

2. Performance within an application
Evaluation

87

Th
ro

ug
hp

ut
: n

or
m

al
ize

d
to

 e
xt

4
(H

ig
he

r i
s

be
tte

r)

ext4
ccfs
ext4
ccfs
ccfs+

But, performance can
be improved with
IGNORE_FSYNC and
stream_sync()!

88

Crash consistency: Better than ext4
- 9 vulnerabilities in ext4, 2 minor in CCFS

Performance: Like ext4 with little programmer overhead
- Much better with additional programmer effort

More results in paper!

Evaluation: Summary

FS crash behavior is currently not standardized

Conclusion

89

FS crash behavior is currently not standardized

Ideal FS behavior can improve application consistency

Conclusion

90

FS crash behavior is currently not standardized

Ideal FS behavior can improve application consistency

Ideal FS behavior is considered bad for performance

Conclusion

91

FS crash behavior is currently not standardized

Ideal FS behavior can improve application consistency

Ideal FS behavior is considered bad for performance

Stream abstraction and CCFS solve this dilemma

Conclusion

92

FS crash behavior is currently not standardized

Ideal FS behavior can improve application consistency

Ideal FS behavior is considered bad for performance

Stream abstraction and CCFS solve this dilemma

Thank you! Questions?

Conclusion

93

Examples

1. LevelDB:
a. creat(tmp); write(tmp); fsync(tmp); rename(tmp, CURRENT); --> unlink(MANIFEST-old);

i. Unable to open the database
b. write(file1, kv1); write(file1, kv2); --> creat(file2, kv3);

i. kv1 and kv2 might disappear, while kv3 still exists
2. Git:

a. append(index.lock) --> rename(index.lock, index)
i. “Corruption “ returned by various Git commands

b. write(tmp); link(tmp, object) --> rename(master.lock, master)
i. “Corruption “ returned by various Git commands

3. HDFS:
a. creat(ckpt); append(ckpt); fsync(ckpt); creat(md5.tmp); append(md5.tmp); fsync(md5.tmp);

rename(md5.tmp, md5); --> rename(ckpt, fsimage);
i. Unable to boot the server and use the data

One sector overwrite: Atomic because
of device characteristics

Appends: Garbage in some file systems

File systems do not usually provide
atomicity for big writes

File System Study: Results

File system
configuration

Atomicity
One sector
overwrite

One sector
append

Many sector
write

Directory
operation

ext2
async ✘ ✘ ✘

sync ✘ ✘ ✘

ext3
writeback ✘ ✘

ordered ✘

data-journal ✘

ext4

writeback ✘ ✘

ordered ✘

no-delalloc ✘

data-journal ✘

btrfs ✘

xfs
default ✘

wsync ✘

One sector overwrite: Atomic because
of device characteristics

Appends: Garbage in some file systems

File systems do not usually provide
atomicity for big writes

Directory operations are usually atomic

File System Study: Results

File system
configuration

Atomicity
One sector
overwrite

One sector
append

Many sector
write

Directory
operation

ext2
async ✘ ✘ ✘

sync ✘ ✘ ✘

ext3
writeback ✘ ✘

ordered ✘

data-journal ✘

ext4

writeback ✘ ✘

ordered ✘

no-delalloc ✘

data-journal ✘

btrfs ✘

xfs
default ✘

wsync ✘

Collecting System Call Trace

git add file1 Application Workload

Record strace, memory accesses (for mmap
writes), initial state of datastore

creat(index.lock)
creat(tmp)
append(tmp, data, 4K)
fsync(tmp)
link(tmp, permanent)
append(index.lock)
rename(index.lock, index)

TraceInitial state
.git/...

Calculating Intermediate States

a. Convert system calls into atomic modifications

creat(index.lock)
creat(tmp)
append(tmp, 4K)

fsync(tmp)
link(tmp, permanent)
...

creat(inode=1, dentry=index.lock)
creat(inode=2, dentry=tmp)
truncate(inode=2, 1)
truncate(inode=2, 2)
...
truncate(inode=2, 4K)
write(inode=2, garbage)
write(inode=2, actual data)
...

link(inode=2, dentry=permanent)
...

Calculating Intermediate States

b. Find ordering dependencies

creat(index.lock)
creat(tmp)
append(tmp, 4K)

fsync(tmp)
link(tmp, permanent)
...

creat(inode=1, dentry=index.lock)
creat(inode=2, dentry=tmp)
truncate(inode=2, 1)
truncate(inode=2, 2)
...
truncate(inode=2, 4K)
write(inode=2, garbage)
write(inode=2, actual data)
...

link(inode=2, dentry=permanent)
...

Calculating Intermediate States

c. Choose a few sets of modifications obeying dependencies

creat(inode=1, dentry=index.lock)
creat(inode=2, dentry=tmp)
truncate(inode=2, 1)
truncate(inode=2, 2)
...
truncate(inode=2, 4K)
write(inode=2, garbage)
write(inode=2, actual data)
...

link(inode=2, dentry=permanent)
...

Set 1:
creat(inode=1, dentry=index.lock)
<all truncates and writes to inode 2>

Set 2:
creat(inode=1, dentry=index.lock)
<all truncates and writes to inode 2>
link(inode=2, dentry=permanent)

Set 3:
creat(inode=1, dentry=index.lock)
creat(inode=2, dentry=tmp)
truncate(inode=2, 1)

... more sets

Calculating Crash States from a Trace

d. Reconstruct states from sets of modifications

Set 1:
creat(inode=1, dentry=index.lock)
<all truncates and writes to inode 2>

Set 2:
creat(inode=1, dentry=index.lock)
<all truncates and writes to inode 2>
link(inode=2, dentry=permanent)

Set 3:
creat(inode=1, dentry=index.lock)
creat(inode=2, dentry=tmp)
truncate(inode=2, 1)

... more sets

.git/index.lock (0)

.git/index.lock (0)

.git/permanent (4K)

.git/index.lock (0)

.git/tmp (1)

Checking ALC on Intermediate States

.git/tmp (4K)

.git/index (1K)
.git/tmp (4K:garbage)
.git/index.lock (1K)

.git/permanent (4K)

.git/tmp (4K)

.git/index (0K)

Multiple Possible Intermediate States

git status; git fsck;

ERROR CORRECT OUTPUT CORRECT OUTPUT

Applications implement complex update protocols
‐ Aiming for both correctness and performance
‐ Each protocol is different

Update protocols hard to implement and test
Applications many and varied

‐ Little effort to test each

Unfortunately, file systems make ALC more difficult

Why is ALC problematic?

Persistence models used by us to find vulnerabilites
But, persistence models can be complex

‐ Example: write() ordered before unlink() iff they act on the
same directory and write() is more than 4KB

‐ Useful for verifying ALC atop a file system

Persistence models not suitable to discuss ALC
‐ Is fsync() required after writes to log file in ext3?
‐ Or, do write() calls persist in-order?

Persistence Models: Too Complex

Does FS obey a particular interesting behavior?
‐ Example: Do write() calls persist in-order?
‐ Are write() calls atomic?

Applications typically depend on some properties
‐ Forgot an fsync(): depends on ordering properties
‐ Forgot checksum verification: depends on atomic write()

Persistence Properties

Content-Atomicity of Appends
Does an append result in garbage?

Persistence Properties: Example #1

Impossible
Intermediate StateSystem call sequence

lseek(file1, End of file)

write(file1, “hello”)

/file1 “he#@!”

/file1 “he”

Allowed
Intermediate State

Ordered Writes
Are the effects of write() sent to disk in-order?

Persistence Properties: Example #2

Impossible
Intermediate State
/file1 “”
/file2 “world”

/file1 “hello”
/file2 “”

Allowed
Intermediate State

System call sequence
write(file1, “hello”)

write(file2, “world”)

 creat(index.lock)
(i) store object

append(index.lock)
 rename(index.lock,index)

 stdout(finished add)

Example: Git

(i) store object

(ii) git add

(iii) git commit

(i) store object
creat(branch.lock)

append(branch.lock)
append(branch.lock)
append(logs/branch)
append(logs/HEAD)

rename(branch.lock,x/branch)
stdout(finished commit)

mkdir(o/x)
creat(o/x/tmp_y)

append(o/x/tmp_y)
 fsync(o/x/tmp_y)

link(o/x/tmp_y, o/x/y)
unlink(o/x/tmp_y)

0

2
3
4
5

1

Atomicity

Example: Git

 creat(index.lock)
(i) store object

append(index.lock)
 rename(index.lock,index)

 stdout(finished add)

(i) store object

(ii) git add

(iii) git commit

(i) store object
creat(branch.lock)

append(branch.lock)
append(branch.lock)
append(logs/branch)
append(logs/HEAD)

rename(branch.lock,x/branch)
stdout(finished commit)

mkdir(o/x)
creat(o/x/tmp_y)

append(o/x/tmp_y)
 fsync(o/x/tmp_y)

link(o/x/tmp_y, o/x/y)
unlink(o/x/tmp_y)

0

2
3
4
5

1

Ordering

Example: Git

(i)
0,
(i)

4(i)
0,
(i)

4

 creat(index.lock)
(i) store object

append(index.lock)
 rename(index.lock,index)

 stdout(finished add)

(i) store object

(ii) git add

(iii) git commit

(i) store object
creat(branch.lock)

append(branch.lock)
append(branch.lock)
append(logs/branch)
append(logs/HEAD)

rename(branch.lock,x/branch)
stdout(finished commit)

mkdir(o/x)
creat(o/x/tmp_y)

append(o/x/tmp_y)
 fsync(o/x/tmp_y)

link(o/x/tmp_y, o/x/y)
unlink(o/x/tmp_y)

0

2
3
4
5

1

Durability

Example: Git

d

d

 creat(index.lock)
(i) store object

append(index.lock)
 rename(index.lock,index)

 stdout(finished add)

(i) store object

(ii) git add

(iii) git commit

(i) store object
creat(branch.lock)

append(branch.lock)
append(branch.lock)
append(logs/branch)
append(logs/HEAD)

rename(branch.lock,x/branch)
stdout(finished commit)

mkdir(o/x)
creat(o/x/tmp_y)

append(o/x/tmp_y)
 fsync(o/x/tmp_y)

link(o/x/tmp_y, o/x/y)
unlink(o/x/tmp_y)

0

2
3
4
5

1

Vulnerability Study: Patterns

Across syscall atomicity: Few, minor consequences

Vulnerability Study: Patterns

Garbage during appends cause 4 vulnerabilities
File writes seemingly need only sector-level atomicity

Vulnerability Study: Patterns

A separate fsync() on parent directory: 6 vulnerabilities

Vulnerability Study: Patterns

Six applications do not fsync() directory operations

Vulnerability Study: Patterns

Solution:
1. User supplies application workload
2. Record a system-call trace from workload
3. Use “Abstract Persistence Model” and reconstruct

targeted intermediate states
4. Run user-given checker on reconstructed states

ALICE: Solution

git add file1

creat(index.lock)
creat(tmp)
append(tmp, 4K)
fsync(tmp)
link(tmp, perm)
...

.git/index.lock (0)

.git/index.lock (0)

.git/permanent (4K)

.git/index.lock (0)

.git/tmp (1)

CORRECT

ERROR

ERROR

git status
git fsck

ALICE: Intermediate States #1

Does application need atomicity across system calls?
Method: Crash after each system call

creat(index.lock).
creat(tmp)
append(tmp, 4K)
fsync(tmp)
link(tmp, perm)
...

ALICE: Intermediate States #1

Does application need atomicity across system calls?
Method: Crash after each system call

creat(index.lock).
creat(tmp)
append(tmp, 4K)
fsync(tmp)
link(tmp, perm)
...

Crash here

ALICE: Intermediate States #1

Does application need atomicity across system calls?
Method: Crash after each system call

creat(index.lock).
creat(tmp) .
append(tmp, 4K)
fsync(tmp)
link(tmp, perm)
...

Crash here
 ...

Does application need atomicity of an individual
system call?
Method:

1. Apply all system calls until examined call
2. Apply various partial effects of examined callcreat(index.lock)

creat(tmp)
append(tmp, 4K)
fsync(tmp)
link(tmp, perm)
...

ALICE: Intermediate States #2

System call
examined

Does application need atomicity of an individual
system call?
Method:

1. Apply all system calls until examined call
2. Apply various partial effects of examined callcreat(index.lock).

creat(tmp) .
append(tmp, 4K)
fsync(tmp)
link(tmp, perm)
...

ALICE: Intermediate States #2

System call
examined

Apply these calls

Does application need atomicity of an individual
system call?
Method:

1. Apply all system calls until examined call
2. Apply various partial effects of examined callcreat(index.lock).

creat(tmp) .
append(tmp, 4K)
fsync(tmp)
link(tmp, perm)
...

ALICE: Intermediate States #2

System call
examined

Apply these calls append(tmp, 2K)

(or)
append(tmp, “#@!%^”)

(or)
append(tmp, 1K)

Apply one of these

Does application need ordering of a system call?
Method:

1. Apply all system calls except examined call ...
2. Crash at different points in trace

creat(index.lock)
creat(tmp)
append(tmp, 4K)
fsync(tmp)
link(tmp, perm)
...

ALICE: Intermediate States #3

System call
examined

Does application need ordering of a system call?
Method:

1. Apply all system calls except examined call ...
2. Crash at different points in trace

creat(index.lock).
creat(tmp)
append(tmp, 4K) .
fsync(tmp)
link(tmp, perm)
...

ALICE: Intermediate States #3

System call
examined

Ordering
examined

Does application need ordering of a system call?
Method:

1. Apply all system calls except examined call ...
2. Crash at different points in trace

creat(index.lock).
creat(tmp)
append(tmp, 4K) .
fsync(tmp) .
link(tmp, perm) .
...

ALICE: Intermediate States #3

System call
examined Ordering

examined

File System Study: Results
File system

configuration

Atomicity Ordering
One sector
overwrite

Append
content

Many sector
overwrite

Directory
operation

Overwrite →
Any op

Append →
Any op

Dir-op
→ Any op

Append →
Rename

ext2
async ✓

sync ✓ ✓ ✓ ✓ ✓

ext3
writeback ✓ ✓ ✓

ordered ✓ ✓ ✓ ✓ ✓ ✓

data-journal ✓ ✓ ✓ ✓ ✓ ✓ ✓

ext4

writeback ✓ ✓ ✓

ordered ✓ ✓ ✓ ✓ ✓

no-delalloc ✓ ✓ ✓ ✓ ✓ ✓

data-journal ✓ ✓ ✓ ✓ ✓ ✓ ✓

btrfs ✓ ✓ ✓ ✓ ✓

xfs
default ✓ ✓ ✓ ✓ ✓

wsync ✓ ✓ ✓ ✓ ✓ ✓

One-sector-overwrite atomicity is due to current hardware,
might change with NVMs

File System Study: Results
File system

configuration

Atomicity Ordering
One sector
overwrite

Append
content

Many sector
overwrite

Directory
operation

Overwrite →
Any op

Append →
Any op

Dir-op
→ Any op

Append →
Rename

ext2
async ✓

sync ✓ ✓ ✓ ✓ ✓

ext3
writeback ✓ ✓ ✓

ordered ✓ ✓ ✓ ✓ ✓ ✓

data-journal ✓ ✓ ✓ ✓ ✓ ✓ ✓

ext4

writeback ✓ ✓ ✓

ordered ✓ ✓ ✓ ✓ ✓

no-delalloc ✓ ✓ ✓ ✓ ✓ ✓

data-journal ✓ ✓ ✓ ✓ ✓ ✓ ✓

btrfs ✓ ✓ ✓ ✓ ✓

xfs
default ✓ ✓ ✓ ✓ ✓

wsync ✓ ✓ ✓ ✓ ✓ ✓

File systems patched to obey
a particular property

Does FS behavior affect applications?

What FS behaviors are important?

Is testing for crash vulnerabilities generally helpful?

Not a goal: Comparing correctness among applications

Vulnerability Study: Goals

ALICE: Technique
Application Workload

System-call
Trace

Explorer

Crash state #1
(Violates atomicity

of syscall-1)

Crash state #2
(Violates ordering
of syscall-1 and 2) ...Application

Checker

Correct Incorrect

Crash vulnerability:
Re-ordering syscall-1 and 2

ALICE APM: Abstract
Persistence

Model

File systems vary in persistence properties

Application correctness can vary among file systems!

Challenge: Validating application correctness without
assuming a particular underlying file system

File System Study: Conclusion

Challenge #2: Space Reuse

File1
Inode

Data

Data

Data Stream 2
 (Application 2)

creat(file2);
write(file2, “hello”);
fsync(file2)

132

Challenge #2: Space Reuse

File1
Inode

Data

Data

Data Stream 1
 (Application 1)
write(file3,150MB);
truncate(file1);

 Stream 2
 (Application 2)

133

Challenge #2: Space Reuse

File1
Inode

Data

Data

Data
Inode

File2 Stream 1
 (Application 1)
write(file3,150MB);
truncate(file1);

 Stream 2
 (Application 2)

creat(file2);
134

Challenge #2: Space Reuse

File1
Inode

Data

Data

Data
Inode

File2 Stream 1
 (Application 1)
write(file3,150MB);
truncate(file1);

 Stream 2
 (Application 2)

creat(file2);
write(file2, “hello”);135

Challenge #2: Space Reuse

File1
Inode

Data

Data

Data
Inode

File2

Block pointer manipulation shown
so far occurs in memory

 Stream 1
 (Application 1)
write(file3,150MB);
truncate(file1);

 Stream 2
 (Application 2)

creat(file2);
write(file2, “hello”);136

Challenge #2: Space Reuse

File1
Inode

Data

Data

Data
Inode

File2

What if pointer manipulation
occurs in different streams?

 Stream 1
 (Application 1)
write(file3,150MB);
truncate(file1);

 Stream 2
 (Application 2)

creat(file2);
write(file2, “hello”);137

Challenge #2: Space Reuse

If only one stream commits,
FS consistency will be affectedFile1

Inode

Data

Data

DataFile2
Inode

Possible crash state

 Stream 1
 (Application 1)
write(file3,150MB);
truncate(file1);

 Stream 2
 (Application 2)

creat(file2);
write(file2, “hello”);
fsync(file2)

138

Each file system behaves differently across a crash
- Behavior across crashes are not standardized
- Behavior can be divided into atomicity and ordering

Atomicity of updates might not be maintained
- Atomicity of file writes
- Other operations: Renaming a file, deleting a file etc.

Ordering of updates might not be maintained
- Writes may reach disk out-of-order

File-System Behavior

