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Abstract

We introduce SplitFt, a new fault-tolerance approach for
storage-centric applications in disaggregated data centers.
SplitFt uses a novel split architecture, where large writes are
directly performed on the underlying disaggregated storage
system, while small writes are made fault-tolerant within the
compute layer. The split architecture enables applications
to achieve strong durability guarantees without compromis-
ing performance. SplitFt makes small writes fault-tolerant
using a new abstraction called near-compute logs or Ncl,
which leverages underutilized memory on remote nodes to
log small writes in a fast, cheap, and transparent manner. We
port three POSIX applications (RocksDB, Redis, and SQLite)
to SplitFt and show that they offer strong guarantees com-
pared to weak versions of the applications that can lose data;
SplitFt applications do so while approximating weak ver-
sions’ performance (only 0.1%-10% overhead under YCSB).
Compared to strong versions, SplitFt improves performance
significantly (2.5× to 27× under write-heavy workloads).

CCS Concepts: • Computer systems organization→ De-

pendable and fault-tolerant systems and networks; •
Information systems→ Cloud based storage.
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1 Introduction

Storage-centric applications such as key-value stores [52, 53],
databases [17, 20], document stores [70], and data-structure
stores [82] are increasingly deployed in modern cloud data-
centers [3–5]. These applications must offer high availability,
durability, and strong consistency for the data they store.
A traditional way of realizing this goal is to replicate the

application using primary-backup (PB) [42], consensus [63,
76], or custom protocols [19, 69, 71, 72]. We refer to this
approach as application-level fault tolerance. This approach
offers high availability, durability, and strong consistency.
However, it has two main drawbacks. First, it imposes a
significant burden on developers as they must either make
non-trivial changes to their application (e.g., to model it
as a state machine when using consensus) or implement
custom protocols, which is a difficult task. Second, it imposes
significant resource overhead because the application uses
𝑛× CPU, network, and disk resources with 𝑛 replicas.

Storage-centric applications today in the modern data cen-
ter use an alternative approach. Here, the application runs
on a stateless compute layer and persists its data on a stor-
age layer disaggregated from the compute. The storage layer
keeps the data highly available, durable, and consistent. The
application instance can fail and restart (potentially on differ-
ent physical hardware) yet seamlessly recover its state from
the storage layer. We refer to this approach as disaggregated
fault-tolerance orDft (§2). Many storage-centric applications
are built in this manner [5, 10, 12, 18, 44, 67]. Dft offers two
main benefits for applications. First, it enables transparent
fault tolerance: applications need not be modified or im-
plement complex fault-tolerance protocols; the underlying
storage layer provides the required fault-tolerance. Second,
Dft is cheap: it does not require additional application-level
resources, and the cost of running the storage service is amor-
tized across all applications using it. This paper focuses on
an important class of applications like key-value stores and
databases that use the POSIX file interface for persistence. In
the Dft paradigm, many such applications store their data
on a disaggregated, distributed file system (dfs) [2, 9].
Unfortunately, applications in the Dft paradigm suffer

from poor performance or weak guarantees. Applications
that require strong durability guarantees must persist every
update to the underlying dfs before acknowledging clients.

https://doi.org/10.1145/3627703.3629561
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Such forced writes, even with batching, dramatically reduce
throughput and increase latency. Despite efforts to improve
performance with fast interconnects [8, 11] and local stor-
age [7], distributed file systems suffer from poor performance
due to software overheads [96]. Given the high overhead of
synchronous dfs writes, many applications tradeoff guar-
antees for performance. In particular, applications do not
make updates immediately durable on the dfs but do so only
periodically. However, this results in poor semantics, as ac-
knowledged updates can be lost upon application failures.
Thus, applications atop Dft today are faced with a dilemma:
choose strong guarantees and pay a high performance cost,
or choose performance and settle for weak guarantees.

To address this problem, we introduce split fault-tolerance
or SplitFt, a new approach that helps applications in the Dft
paradigm realize strong guarantees without compromising
on performance (§3). SplitFt achieves this goal via a novel
split architecture. SplitFt realizes that most storage-centric
applications perform two kinds of writes: small writes to
logs for durability and crash recovery in the critical path,
and large writes for compacting or checkpointing data in the
background. While large writes can obtain high throughput
from the underlying dfs, small writes severely limit through-
put and increase latency. Thus, SplitFt splits and handles the
writes differently: large, background writes are pushed di-
rectly to the underlying dfs, while small, synchronous writes
are made fault-tolerant quickly within the compute layer.

To make small writes fault-tolerant, SplitFt introduces a
new abstraction called near-compute logs (Ncl). Ncl makes
an application’s small log writes fault-tolerant by replicating
them to the memory of a few compute nodes that we call log
peers. Any node in the compute layer can lend its spare mem-
ory to a common pool and act as a log peer. Nclmanages the
common pool and allocates memory regions in peers to ap-
plications. Ncl achieves fault-tolerance in a fast, cheap, and
transparent manner. Ncl is fast: it leverages kernel bypass,
and fast interconnects and protocols (e.g., RoCE, InfiniBand)
ubiquitously available in modern data centers [55, 56] to
replicate writes with low latencies. Ncl is cheap: memory
is largely underutilized in modern data centers [1, 54, 87]
and the peers only lend such spare memory. Further, Ncl
performs writes on peers via 1-sided RDMA operations that
require no or minimal CPU interruption at the peers, essen-
tially treating the peers as passive memory units. Finally, Ncl
is transparent: POSIX writes are transparently intercepted
and replicated, requiring no to little changes to applications.
We have designed and implemented SplitFt and the Ncl

abstraction (§4). A primary challenge in our design is to
ensure correctness under a range of possible failures (e.g.,
application and peer crashes). To address this challenge, Ncl
uses many techniques. For example, in-order majority-based
replication ensures that completed writes can be recovered
in the application-issued order despite application and peer
failures. Second, Ncl enables safe application recovery by

managing peer-allocation information in a controller and a
peer-side allocation validation. Finally, an atomic catch-up
mechanism helps safely replace failed peers with new ones.

We have ported three storage-centric applications to SplitFt:
a key-value store (RocksDB [52]), a data-structure store (Re-
dis [82]), and a relational database (SQLite [20]). Porting
them required minimal changes: we modified 6 to 19 LOC.
Our experiments (§5) show that applications in SplitFt offer
the same high throughput as the weak versions of applica-
tions for a write-only workload (8% overhead in the worst
case). Under YCSB workloads, SplitFt performs significantly
better than the strong versions (by an order of magnitude
under write-heavy workloads) and closely matches the per-
formance of weak versions (10.8% worst-case overhead). We
also show that applications in SplitFt can recover their data
as quickly as applications in the Dft paradigm. Finally, we
show that Ncl can gracefully handle peer failures with mini-
mal impact on application performance.
This paper makes four contributions.
• We propose SplitFt, a new fault-tolerance approach for
storage-centric applications in disaggregated data centers.

• We introduce Ncl, a new abstraction that uses remote
memory within the compute cluster to log small writes in
a fast, cheap, and fault-tolerant manner.

• We design and implement SplitFt and Ncl. Our implemen-
tation is available onGitHub at dassl-uiuc/compute-side-log.

• We experimentally show the benefits of SplitFt and Ncl
by porting three applications.

2 Background and Motivation

We first provide a brief background on disaggregated fault-
tolerance (Dft), focusing on POSIX applications that use
disaggregated file systems as their storage backend. Then,
we explain how these applications process updates and why
applications atop Dft today can achieve strong guarantees
or high performance but not both.

2.1 Disaggregated Fault Tolerance

Application-level fault tolerance offers strong guarantees,
but it has critical drawbacks. First, it imposes significant bur-
den on the developer. It either requires significant changes
to the application or requires implementing custom proto-
cols, which are difficult to get right and have led to many
bugs in popular systems [13–16]. Second, it requires running
multiple copies of the application, usually requiring (𝑓 + 1)×
or (2𝑓 + 1)× resources to tolerate 𝑓 failures, increasing costs.
Finally, the system cannot support large datasets because
the storage capacity is limited by the disks on each replica.

Dft offers an attractive alternative in disaggregated data
centers. The application runs in a stateless compute layer
and persists its state on disaggregated storage. The storage
layer provides high availability, durability, and consistency
guarantees for the data stored. Upon a failure, an application

https://github.com/dassl-uiuc/compute-side-log
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Configuration Throughput (KOps/s) Avg. Latency (𝜇s)
Weak 232 50
Strong 4.3 (54× ↓) 4625 (92× ↑)

Table 1. Cost of Strong Guarantees. The table shows the overheads

of achieving strong guarantees in a RocksDB application server with CephFS

as the underlying dfs. The throughput shown is for a write-only workload

with 12 clients. The arrows show the throughput drop and latency increase

compared to the weak configuration.

can be restarted on any physical machine in the compute
layer. However, the application can still seamlessly recover
its state from the disaggregated storage layer and continue
to operate. For this reason, this approach is also sometimes
called REDS (recovery from disaggregated storage) [67]. One
difference from application-level fault tolerance is that there
are no active backups in Dft; as a result, application fail-over
in Dft might be slow. However, this problem can be solved
with mechanisms such as speculative recovery [67]. Dft is
transparent, cheap, and can support large datasets as the
underlying dfs offers huge storage capacities.
Our focus is on storage applications that use the POSIX

file interface for persistence. Many such applications store
their data on a disaggregated, distributed file system such
as CephFS [9] in the Dft setting. Access to the dfs is hid-
den underneath the VFS layer [85], enabling applications
to transparently achieve fault tolerance. POSIX applications
persist updates by issuing one or more write system calls
followed by an fsync. With dfs, writes are locally buffered
in client’s (i.e., the application server’s) memory, and then
pushed to the underlying dfs upon an fsync. Internally, the
dfs uses replication [92] or erasure coding [61] to keep the
data safe. Thus, upon a crash, writes that were issued before
the last successful fsync are guaranteed to be durable.

2.2 Strong Guarantees Or Performance

To achieve strong guarantees, storage-centric applications
must flush updates to the underlying dfs before acknowledg-
ing external clients (i.e., they must issue a write followed by
an fsync). To amortize the cost of flushes, applications batch
several update requests into one or fewwrite calls and then is-
sue one fsync. However, such synchronous flushes, evenwith
batching, lead to poor performance. Synchronous flushes are
prohibitively expensive, which has led many applications to
provide configuration options to only lazily flush updates to
storage. However, such a configuration leads to an obvious
problem: acknowledged updates can be lost after application
failures, resulting in poor semantics.
To illustrate the performance gap between strong and

weak application guarantees, we compare the performance
of RocksDB in the Dft setting with CephFS as the under-
lying dfs. We deploy a CephFS cluster with three replicas;
each replica has a SATA SSD. We mount the file system on
an application server where we run RocksDB (please see
§5 for more details about the setup). We run a write-only
workload in two modes of RocksDB: one where updates are

App Small, sync writes Large, bg writes Reclaim
policy

RocksDB write-ahead log (log) sorted-string tables (sst) delete
LevelDB write-ahead log (log) sorted tables (ldb) delete
Redis append-only file (aof) redis database (rdb) delete
SQLite write-ahead log (db-wal) database (db) overwrite*
Postgres write-ahead log (pg_wal) database (base) overwrite*
HyperSQL redo log (log) database (data) overwrite
MariaDB redo log (ib_logfile) tablespace file (ibd) overwrite
MongoDB journal (WiredTigerLog) WiredTiger Store (wt) delete

Table 2.Writes in Storage-Centric Applications. The second and

the third columns show the files that mostly receive small writes in the critical

path and the ones that receive bulk writes in the background, respectively. The

last column shows how logs are reclaimed. * – also supports delete.

acknowledged only after they are flushed to a write-ahead
log (strong) and another where updates are acknowledged
before a flush (weak). Table 1 shows the result. As shown,
the strong mode offers about 50× lower throughput and
incurs roughly 90× higher latency compared to the weak
mode (even when RocksDB batches update requests). While
the above experiment uses CephFS (a disaggregated file sys-
tem) as the backing store, we observed similar trends when
the application server uses a local file system backed by
CephRBD [6] (a remote block device). Thus, storage-centric
applications atop Dft today must choose either strong guar-
antees or high performance. We next explain how these
seemingly conflicting goals can be achieved together.

3 SplitFT Idea and Design Rationale

Our goal is to enable storage-centric applications to achieve
both strong guarantees and high performance in the Dft par-
adigm. To this end, we first observe that most storage-centric
applications perform two kinds of writes. First, they issue
small, synchronous writes to a log for durability and crash
recovery in the critical path. Then, they periodically compact
or checkpoint data by performing bulk asynchronous writes,
after which the logs are garbage collected.

We find that performing writes in this manner is pervasive
in key-value stores, databases, and other systems. We ana-
lyzed eight widely used storage-centric applications includ-
ing popular ones such as RocksDB, SQLite, and PostgreSQL.
As shown in Table 2, all of these applications perform small,
synchronous writes to a log and periodically perform large
writes in the background. The large writes capture the infor-
mation contained in the small log writes and thus applica-
tions garbage collect the logs after the large writes. Appli-
cations use two different policies to garbage collect logs. As
shown in the last column, some applications delete a log file
and create a new one for absorbing further updates, while
some of them create one log file and keep reusing it (treating
the log file as a circular buffer). As an example, consider
RocksDB, where all updates are synchronously written to an
on-disk log for durability and crash recovery (in addition to
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Figure 1. IO Sizes and Effect on Throughput. (a)-(c) show the sizes of log writes, and compaction or checkpointing writes in RocksDB, Redis, and

SQLite under a write-only workload. We configure the applications to offer strong guarantees, i.e., updates are flushed before they are acknowledged. The underlying

dfs is CephFS. RocksDB and Redis perform batching: several requests are grouped in a large write system call and then an fsync is issued. The plotted write sizes

indicate size of data submitted to CephFS upon an fsync. (d) shows the sequential write throughput with different IO sizes in CephFS.

the in-memorymemtable). Periodically, the memtable is com-
pacted and written as large sstable files in the background,
after which RocksDB garbage collects the log by deleting it.
To understand the difference in write IO sizes, we run a

write-only workload with small key-value pairs (24B keys
and 100B values) typical in many application workloads [43].
We measure the size of writes issued to the logs and the ones
issued in the background to compact or checkpoint data.
Figure 1 shows the result for three applications (RocksDB,
Redis, and SQLite). As shown, the size of the writes to logs is
significantly smaller than the background writes issued for
compacting or checkpointing data. For example, in RocksDB,
synchronous log writes are five orders of magnitude smaller
than background writes to sstable files. We find a similar
pattern in other applications shown in Table 2 as well.
Large writes issued to dfs can achieve high throughput;

further, since such writes are issued during compaction or
checkpointing in the background, they rarely affect request
latencies. In contrast, small writes severely limit throughput
and dramatically increase the latency as they are issued in the
critical path of a client request. As shown in Figure 1(d), small
512-byte writes lead to roughly three orders of magnitude
lower throughput than large 64-MB writes.

Based on these observations, SplitFt splits and handles the
writes differently. Large, background writes take the usual
path: they are directly performed on the underlying dfs as
they can extract good performance from the dfs and they
rarely affect request latencies. Small writes in the critical
path, however, are made fault-tolerant quickly within the
compute layer, reducing latency and improving throughput.
To enable fast fault-tolerance for small writes, SplitFt uses
a new abstraction that we call near-compute logs (Ncl).

Ncl makes an application’s small log writes fault-tolerant
by replicating them to the memory of a few compute nodes
called log peers. Three trends in data centers make this design
possible and effective.
• First, low-latency networking (enabled by kernel bypass
and fast protocols and interconnects) is ubiquitous in the
modern data center [55, 56]; thus, writes can be replicated
with minimal latency.

• Second, memory is largely underutilized in modern data

2. ckpoint or 
compact

3. delete log

NCL 
Library

App 

non-ncl 
files

1. log writes
ncl files

Disagg.
File System

Log PeerLog PeerLog Peer
NCL 

Log Peers

NCL
Controller

Figure 2. SplitFt High-Level Architecture. The figure shows

the high-level architecture of SplitFt. Ncl components are shown in grey.

centers; for example, as much as 50% of server memory is
unutilized in Google and Alibaba data centers [1, 54, 87]. A
recent study fromMicrosoft [93] also shows that about 45%
of memory is not even allocated to any VM or container
in Azure Compute clusters; a fraction of this unallocated
memory is also stranded where the local CPUs are sat-
urated and cannot use the memory. The log peers only
lend such spare memory to absorb small writes without
requiring additional resources. Further, because SplitFt
predominantly keeps log files in Ncl and logs are garbage
collected after checkpointing writes, the memory required
for fault-tolerance is small and fixed.

• Finally, the memory on the log peers can be efficiently ac-
cessed with 1-sided RDMA operations; such 1-sided writes
require no CPU interruption at the peers.
As a result,Ncl achieves fault-tolerance in a fast and cheap

manner. Ncl does so in a transparent fashion, requiring little
modifications to applications.

4 SplitFT Design and Implementation

We now describe the design and implementation of SplitFt.
We first provide an overview (§4.1) and explain the Ncl ab-
straction and its operation in failure-free cases (§4.2-§4.4).
Then, we explain how failures are handled (§4.5), and show
that Ncl preserves correctness under failures (§4.6). We fi-
nally describe SplitFt and Ncl’s implementation (§4.7).
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initialize() //called upon open; get 
peers and set up memory regions 
record(offset, data) //called upon 
write; records data on regions at offset
release() //called upon unlink; releases 
and resets mem region on peers
recover() //called upon open during app 
recovery; reads the mem regions 

Figure 3. Ncl Operations. The figure shows Ncl’s main operations.

4.1 SplitFt Overview

Figure 2 shows the architecture of SplitFt. At a high level,
SplitFt intercepts file-system operations and transparently
directs them either to the underlying dfs or Ncl. SplitFt does
this classification at the file level and in a static manner. The
file-level, static approach lends simplicity and works well
in practice because in most applications, certain files (e.g.,
write-ahead logs in RocksDB) almost always receive only
small writes, while certain files (e.g., sstables) mostly receive
large writes as shown in Figure 1(a)-(c). Applications indicate
that a file will receive small, synchronous writes via a new
O_NCL flag in the open system call; we call such a file an
ncl file. Determining whether a file should be classified as
an ncl file is an one-time effort and is straightforward.

Figure 2 also shows a typical workflow in SplitFt. In most
applications, logs are the ones that are classified as ncl files.
First, small, synchronous writes to such logs are sent to
the Ncl layer. The application then usually checkpoints and
compacts the data; these non-ncl file operations are directly
sent to the dfs. Once the data is safe on the dfs, the log is
garbage collected (usually by deleting the log, removing the
file from the Ncl layer). The operations to non-ncl files are
essentially the same as in Dft and thus we do not describe
them further. The rest of the section focuses on how Ncl
manages and handles operations to ncl files.
While our discussion focuses on disaggregated file sys-

tems as the storage backend, we note that our approach and
design also readily apply to applications that use a disaggre-
gated block store (e.g., CephRBD [6]). With a block store,
applications run atop a local file system. Since SplitFt inter-
cepts operations at the system-call level, it can transparently
direct small, synchronous writes to Ncl, while allowing bulk
writes to go to the local file system backed by the block store.

4.2 Ncl Components, Operations, and Guarantees

Ncl has three important components as shown in Figure 2:
ncl-lib, a controller, and the log peers. ncl-lib is a library that
applications link to; all operations to ncl files are handled by
ncl-lib. The controller is a fault-tolerant service that stores
important metadata and manages several control-plane op-
erations. In particular, it maintains the list of available log
peers, and aids during peer and application server recovery.
Finally, any node in the compute layer willing to lend its
spare memory can register itself as a peer on the controller.

Figure 3 shows the main Ncl operations. First, when a
new ncl file 𝑔 is created, upon open, initialize is invoked.
In this call, ncl-lib contacts the controller to get available
peers and establishes connections to peers, requesting each
peer to set up an RDMA memory region for 𝑔. The peers’
CPUs are involved only during this initial setup phase. Upon
a write (or variants such as pwrite) to 𝑔, record is invoked.
In this call, ncl-lib uses 1-sided RDMA writes to record the
data to the memory regions on enough peers. When 𝑔 is
deleted (e.g., when the application checkpoints or compacts
the corresponding data), the release call is invoked. ncl-lib
releases and resets the memory regions associated with 𝑔

on the log peers. As we mentioned, in most applications,
logs are the ones that will be classified as ncl files and so
they are not read during normal operation. However, they
will be read when the application server recovers from a
crash; an open to a ncl file 𝑔 during application recovery
invokes the recover call. This call internally constructs the
most up-to-date content of 𝑔 by issuing 1-sided RDMA reads
to enough peers. Note that applications do not invoke the
Ncl operations directly. Instead, ncl-lib intercepts the POSIX
file operations and invokes the appropriate Ncl operations.
Failuremodel and Guarantees. Ncl assumes a fail-recover
failure model and is not designed to tolerate Byzantine fail-
ures [64]. In this model, both log peers and application
servers can fail (either due to a crash or network partition) at
any time and then recover later. When a log peer crashes, it
loses the data in its memory regions and all of its in-memory
state. When an application server crashes, it loses all its state
and must recover it from Ncl and the underlying dfs. An ap-
plication can recover on any physical machine after a failure
and thus an application cannot expect to recover data from
its local disk. Upon a network partition, a log peer does not
lose its state but may be lagging due to missed writes.
Each application specifies a failure budget, 𝑓 , to Ncl. To

tolerate 𝑓 failures, Ncl allocates 𝑛 = 2𝑓 + 1 peers for each
ncl file and replicates writes to these 𝑛 peers. Ncl guarantees
that if a write 𝑤𝑖 is acknowledged to the application, then
𝑤𝑖 and all preceding writes will be recovered as long as not
more than 𝑓 log peers fail simultaneously. In the unfortunate
case where more than 𝑓 log peers fail simultaneously, Ncl
correctly makes the file unavailable. While such a failure
scenario is rare, the possibility can be further minimized by
placing the peers in different failure domains (e.g., across
racks). The above guarantees are similar to that of standard
fault-tolerance protocols [68, 75].

4.3 Peer Registration, Allocation, and Deallocation

Any node in the compute layer can lend its spare memory
to act as a log peer. A peer is bound to a physical machine
and it initially registers itself on the controller by specifying
its unique name (derived from the physical machine’s iden-
tifier) and the amount of memory that it is willing to lend.



EuroSys ’24, April 22–25, 2024, Athens, Greece X. Luo, R. Alagappan, A. Ganesan

1. get peers

Peer p1

Peers:
   p1:1G,p2:1G…pn:2G
App-peers Map:
   A1:p1,p2,p3
   A2:p4,p5,p6

NCL 
Library

App A1

2. p1, p2, p3

Controller

4b. Set AP map

     p2      p3      p4      pn

w
rit

e

. . .

RPC
RDMA

Log Peers

3. set up MR
and get keys 4a. update avail

Figure 4. Ncl Log Peer Allocation. The figure shows how log peers

are allocated to applications and how memory regions are set up. Once set up,

applications use 1-sided RDMA writes to write to the regions.

The controller records this information and uses it when an
application requests for new peers.
When an application creates an ncl file, ncl-lib contacts

the controller, requesting 𝑛 peers (see step-1 in Figure 4). The
application specifies the amount of memory𝑚 that it needs.
This is easy to obtain as applications usually specify the log
size as a configuration parameter. The controller returns 𝑛
peers whose available memory is at least𝑚 (step-2). ncl-lib
then contacts the peers, requesting each of them to set up
an RDMA memory region for the ncl file. The peers set up
the memory region and return a key with RDMA write-read
permissions to the region (step-3). ncl-lib uses these keys to
subsequently perform RDMA writes on the peers.

The peers maintain a data structure called mr-map, which
maps an application’s unique identifier and ncl filename to
a memory region. The mr-map is used to find the memory
region when an application tries to recover a ncl file (after
a failure). When a peer allocates a memory region for an
ncl file, it decrements its available memory on the controller
(step-4a). The log peers run a lightweight process to handle
this initial setup. After this point, the log peers are treated as
passive memory units that are written to without any CPU
involvement. Finally, ncl-lib also adds an entry into a data
structure called app-peers map (ap-map) on the controller
(step-4b). The ap-map maps the application identifier and
the ncl filename to the associated peers; this information
is used when the application server recovers from a crash.
It is possible that application server could crash before it
updates the ap-map, leaking the reserved space on the peers.
We discuss how Ncl handles space leaks in §4.5.1.

The available memory on a peer maintained at the con-
troller might not be accurate because of the delay between
when a memory region is allocated and when the peer up-
dates the available memory on the controller. Thus, a peer
returned by the controller is only a hint and the peer could re-
ject an allocation request. In this case, the application obtains
another peer from the controller and retries the allocation.

When an application deletes an ncl file, then the associated
memory regions are freed. The peers remove the ncl file

application

local 
buffer

QP QPs
seq
num

file MR

QP sfile MR

QP file MRQP

QPwrite

s

s

ncl-lib
log peers

Figure 5. Ncl RDMA Replication. The figure shows Ncl’s RDMA-

based replication architecture and the structures used by ncl-lib.

mapping from theirmr-map, invalidate the keys, and recycle
the memory region for future use. The peers also contact the
controller to update their available memory. Finally, ncl-lib
also deletes the entry for the ncl file from the ap-map.

4.4 Replication Protocol: Failure-free Operation

Once the memory regions are set up, the application can
perform 1-sided RDMA writes. We now describe how writes
are replicated in the failure-free case. The next subsection
explains how failures are handled.
Applications perform writes and reclaim log files in two

ways as we discussed in §3. First, some applications (e.g.,
RocksDB, Redis) only append to the log file; when the data
is checkpointed or compacted, the log is deleted and a new
file is created to handle further updates. Some applications
(e.g., SQLite), however, create one log file and keep reusing it,
treating the log as a circular buffer; in such cases, the file con-
tents are overwritten. To support both kinds of applications,
Ncl replicates the physical contents of the log file.
Figure 5 shows Ncl’s RDMA-based replication architec-

ture. Ncl maintains a local buffer for a ncl file. Each write
is performed on the local buffer first and then replicated
to the log peers. When the write is replicated on at least a
majority (i.e., 𝑓 + 1) of log peers, ncl-lib returns success to
the application for the write. This guarantees that all com-
pleted writes will be recoverable even if 𝑓 log peers fail. To
replicate data, Ncl maintains an RDMA queue pair (QP) for
each peer. To write to a peer 𝑝’s memory region, Ncl creates
a work request (WR) and puts it in 𝑝’s queue. To find if a
WR has completed, Ncl polls 𝑝’s RDMA completion queue
(CQ). When a majority of WRs for a particular write request
completes, the write is returned as success to the application.

Ncl must ensure that write-s are completed in the cor-
rect, application-issued order on each peer. Ncl ensures this
by leveraging RDMA’s send queue (SQ) ordering guarantee:
RDMA write WRs will be completed in the order in which
they are added to the SQ [81]. Therefore, Ncl adds WRs for
write-s to work queues in the order issued by the applica-
tion. Upon a current write𝑊𝑖 , for each peer 𝑝 , Ncl waits for
completion of all write-s up to𝑊𝑖 (by polling the CQs).𝑊𝑖 is
considered complete when at least a majority of peers have
completed all write-s up to𝑊𝑖 ; Ncl then returns success for
𝑊𝑖 . This ensures that when Ncl returns success for a write
𝑊𝑖 , all write-s up to𝑊𝑖 are recorded in the correct order in
the memory regions of at least a majority of peers.
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Figure 6. Memory Region States. The figure shows the status of

writes in the RDMA queue at the application server for two write-s𝑊𝑎 and

𝑊𝑏 . It also shows the memory regions of the peers. MR: memory region; s:

sequence number. A shaded entry for a write𝑊 in the queue of a peer 𝑝𝑖

indicates that both data and sequence-number for𝑊 have completed on 𝑝𝑖 .

When an application crashes and restarts, it recovers its
ncl files by contacting the corresponding logs peers. For
correctness, Ncl must recover all writes that were returned
as success to the application. Since Ncl does not wait for all
peers to acknowledge (but only a majority), some peers may
be lagging. Ncl thus must differentiate lagging peers from
up-to-date ones and recover the most up-to-date data.
To identify which peer is up-to-date, Ncl assigns a se-

quence number to every write to an ncl file. The sequence
number is written to a fixed location within the memory
regions. Thus, Ncl converts every application-level write
into two RDMA writes on each peer: one for the actual data
and another for the sequence number. For correctness, the
sequence number must be written only after the data write.
This ordering is ensured by adding the WR for sequence-
number to the queue after the WR for the data. The RDMA
writes on a peer for an application-level write is considered
complete only when the WRs of both data and sequence-
number are complete. The next subsection discusses how
the sequence numbers are used during recovery.
Figure 6 illustrates how two application-level write-s𝑊𝑎

and𝑊𝑏 complete inNcl. First, in (i),𝑊𝑎 is returned success as
the data and the sequence numbers are successfully written
to amajority of peers (𝑝1 and 𝑝2). Although the data is written
to 𝑝3, the write on 𝑝3 is not considered complete because the
sequence number is not written yet. In (ii),𝑊𝑏 is complete
on 𝑝1 and is being written to 𝑝2 and 𝑝3. (iii) shows that𝑊𝑏

completes on 𝑝3 (and by induction the previous write𝑊𝑎 is
also complete on 𝑝3). Thus, all writes upto𝑊𝑏 are safe on a
majority of peers and so𝑊𝑏 can be returned as success.

4.5 Failures and Recovery

So far, we have discussed the failure-free case. We now dis-
cuss failures and how Ncl handles them.

4.5.1 Application Failures and Recovery

The application can fail at any point and restart later, pos-
sibly on a different physical machine. Once restarted, the
application must be able to recover all its data. Data written
to the dfs is guaranteed to be safe and is directly recovered
from there. The data written to ncl files must also be safely

recovered. To do so, the application first contacts the con-
troller to get the ncl files that it had before it crashed and also
the peers associated with each of the file (from the ap-map).

The application then contacts the peers. A peer checks its
mr-map to see if it holds the memory region corresponding
to the ncl file of the application. If the entry is present, the
peer returns a key that allows the application to perform
RDMA operations on the memory region. If not, it rejects
the request; this case is possible if the peer had crashed and
recovered (and thus had lost its mr-map).
The application then reads the sequence number of the

ncl file on the log peers and waits to get responses from at
least a majority (𝑓 + 1) peers. The application then chooses
the maximum sequence number among the 𝑓 + 1 responses
as the most up-to-date sequence number for the file. This
is correct because writes are considered complete when the
data and their sequence numbers have been safely recorded
on at least 𝑓 + 1 peers. Because the application contacts 𝑓 + 1
peers during recovery, at least one peer within the contacted
majority must contain the latest sequence number.

The application then contacts the peer that has the maxi-
mum sequence number to retrieve the data from its memory
region; we call this peer the recovery peer. The recovery
peer’s memory region is retrieved as the data for the file and
returned to the application. However, before returning to the
application, Ncl must ensure that enough peers (specifically,
a majority) are caught up with this latest data. If not, Ncl
may return the most up-to-date data to the application now
and subsequently may fail to do so if the application crashes
again; this can happen if the recovery peer was the only peer
that contained the latest data. This is unsafe because the
application can externalize outputs based on this recovered
data and if the same latest data is not recovered after the
subsequent failure, then it will cause inconsistencies.
To understand the above problem, consider the example

scenario in Figure 7(i). Here, 𝑝1 can be selected as the re-
covery peer; 𝑝1 has a greater sequence number because the
application crashed just after writing to 𝑝1 but before writ-
ing to 𝑝2 and 𝑝3. Now, assume the latest data (i.e., ab) is
returned after recovery and the application externalizes out-
puts based on this returned data. If 𝑝1 and the application
crash subsequently, then only an older version of the data (a)
will be recovered in the future from 𝑝2 and 𝑝3, leading to an
application inconsistency. For this reason, before returning
the recovered data to the application, Ncl must ensure that
enough peers are caught up with that data.

For log files that are append-only, the catch-up procedure
is fairly straightforward. The application can simply transfer
the missing bytes at the end of the log to a lagging peer. Note
that it is also possible for a peer 𝑝 to be more up-to-date than
the recovery peer; for example, in Figure 7(i), 𝑝2 could have
also been chosen as the recovery peer (considering responses
from 𝑝2 and 𝑝3), in which case 𝑝1 will be more up-to-date
than the recovery peer. In this case, the application could



EuroSys ’24, April 22–25, 2024, Athens, Greece X. Luo, R. Alagappan, A. Ganesan

p1 2

p2

p3

a b

a

a

s

1

MR
p1 2

p2

p3

a b

a

2

a b p2 2

p3

p4

a 1

a b

ap-map 
app:p1p2p3

 

incorrect ap-map
app:p2p3p4

 

1 0

p2 2

p3

p4

a 1

a b

0

data loss 
if p2 fails

(i) (iii)

1

p1 3

p2

p3

c b

a b

a

s

2

MR

1

(ii)

Figure 7. Example Application- and Peer-Failure Scenarios.

(i) shows a possible memory-region state when the application recovers after

a crash when processing write b. In (ii), the application uses the log file as a

circular buffer; in this case, it is not possible to catch up a lagging peer by only

transferring the tail of the log. (iii) shows the case where a peer fails and a new

peer is added by the application and how a data loss is possible if the ap-map
is updated before catching up the new peer.

instruct the more up-to-date peer to truncate the log tail and
update its sequence number.
However, logs that are used as a circular buffer cause

challenges, where a simple transfer as discussed above is not
possible. For example, consider the case in Figure 7(ii), where
the data written by the first write a is overwritten by the
third write with c. Here, simply transferring the tail of the
log from 𝑝1 to the other peers would be incorrect. Ncl thus
copies the entire recovered memory region to all the peers.
However, this step must be done atomically. Thus,Ncl copies
the data to new memory regions on the peers; the peers then
atomically switch their mr-map entry to point to the newly
copied region. For simplicity, Ncl adopts this design for both
append-only and circular logs uniformly. Note that if the
sequence number of a peer 𝑝 is equal to the recovery peer’s
sequence number, it does not mean that 𝑝’s memory region
will be identical to that of the recovery peer. This is because
the next data write might have succeeded on one of them,
but the next sequence number write may not have. Thus,
Ncl safely performs the data catch-up step even when the
sequence numbers are equal. As an optimization, instead of
sending the entire file content, a bytewise difference could
be shipped during the catch-up.
Application failures at an inopportune moment can also

lead to partial writes on the peers. However, this is not a
problem as most POSIX applications understand and ex-
pect that writes can be non-atomic and use application-level
mechanisms such as checksums to ensure atomicity [78].
Ncl’s responsibility is to correctly recover the data (even if
it is only partially written) and pass it on to the application
without interpreting the data in any way.

Note that Ncl can recover incomplete, unacknowledged
writes. While not recovering acknowledged writes is unsafe,
recovering unacknowledged writes does not impact correct-
ness. This behavior is no different from when applications
perform writes on dfs. Specifically, most dfs persist data
on a close or an explicit fsync, and therefore they also can
potentially recover unacknowledged writes.
Handling Space Leaks. Application failures can sometimes

lead to a space leak on the peers. For example, an appli-
cation could allocate space on peers on initialization and
crash right after that (with no information recorded in the
ap-map). Ncl handles such leaks as follows. The application
maintains an epoch number which is incremented whenever
the application intends to update its ap-map entry (i.e., dur-
ing initialization or when replacing peers). The application
provides this epoch number to the peers when requesting
an allocation; the peers store the epoch number in their
mr-map-s. The application then stamps the ap-map entry
with the epoch number before writing it to the controller.
Periodically, for each memory region with epoch 𝑒𝑝 a peer
maintains, it queries the controller to get the epoch number
𝑒 of the application’s current ap-map entry. If 𝑒 > 𝑒𝑝 , then it
means that the application has moved to a new epoch and
the peer can free its allocation; on the other hand, if 𝑒 < 𝑒𝑝 ,
then the peer’s allocation might be still in progress and so
the allocation cannot be freed. If 𝑒 = 𝑒𝑝 , the peer checks if it
is part of the ap-map entry. If it is, the allocation cannot be
freed; if not, the allocation is freed.

4.5.2 Log Peer Failures and Recovery

Log peers can fail at any time. In such cases, RDMA writes
performed on a failed peer will return an error. After retrying
(configurable) number of times without success, the applica-
tion declares that the log peer has failed. However, as long
as 𝑓 or fewer peers fail, write-s can still proceed without any
impact on availability.

Upon a peer failure, the application asks the controller for
a new peer. The application then establishes connection to
the peer and obtains the keys to write to the memory region.
However, before updating the ap-map on the controller with
the new peer information, the application must ensure that
the new peer is caught up. If not, it might result in a data
loss. Consider the case in Figure 7(iii). Here, two write-s
a and b have completed because they are safely recorded
on 𝑝1 and 𝑝2. Now 𝑝1 fails and as a result, the application
adds a new peer 𝑝4. If the application incorrectly updates
the ap-map immediately, then a data loss can result. This is
because the application could fail after updating the ap-map

but before catching 𝑝4 up. Then, upon a subsequent recovery,
the application may only receive recovery responses from
𝑝3 and 𝑝4, causing it to recover only write a, which is unsafe.

To catch up a new peer, ncl-lib copies the contents of the
ncl file from its local buffer to the peer’s memory region.
Once the new peer is up-to-date, the ap-map is updated and
then subsequent write-s are normally replicated to the new
peer. If more than 𝑓 log peers fail, then the application cannot
process write-s without blocking. In such a situation, the
application server waits until the new log peers are brought
up-to-date before processing new writes.
Maintaining FT Level. Ncl must maintain the desired
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fault-tolerance level despite peer failures. When the applica-
tion is active, it ensures the required fault-tolerance level by
allocating and catching up new peers to replace failed ones
as described above. Nonetheless, when the application has
failed, peer failures cannot be immediately detected. How-
ever, this is not a problem because a failed application can be
quickly re-launched; the application can then detect failed
peers and replace them.
Memory Revocation. A log peer uses the same failure-
recovery mechanism described above to revoke memory at
its will (for example, when there is a memory pressure on
the physical machine). When a log peer decides to revoke
its memory, it simply resets the RDMA permissions of the
memory region. The reclaimed memory can then be reused
for other VMs or applications on the physical machine. Note
that memory reclamation is local and instantaneous without
any distributed coordination. After a region is reclaimed,
subsequent writes to it will fail. The application server then
treats that as a log-peer failure and contacts the controller
to get a new log peer assigned as described above.

4.6 Correctness

Ncl must satisfy the following correctness condition: all
write-s returned as success to the application must be re-
covered and in the order in which the write-s completed.
Unacknowledged write-s may or may not be recovered; how-
ever, that doesn’t affect correctness as we discussed earlier.
We now provide a proof sketch for how Ncl ensures this
condition despite application and peer failures. Let𝑊 be the
latest write that completed and 𝑠 be its sequence number.
Ncl guarantees that the application will recover𝑊 and all
prior completed write-s as long as more than 𝑓 peers do not
fail simultaneously.
We first consider the case where the ap-map has not

changed after initialization, i.e., no peers have failed or the
application has not yet replaced the failed peers in the ap-
map. During normal operation,𝑊 and 𝑠 must have been
written successfully on at least 𝑓 + 1 peers. During recovery,
Ncl contacts 𝑓 + 1 peers to retrieve the latest sequence num-
ber. First, if no peers had failed, because of the intersection
between the write and recovery quorums, at least one peer
will return a sequence number that is at least 𝑠 . Second, if
some peers had failed, then the application will not receive a
response from those peers; if a peer had crashed and recov-
ered, such a peer will correctly reject the recovery request.
As long as the application receives 𝑓 + 1 recovery responses,
one among them is guaranteed to be at least 𝑠 .

Next, we consider the case where the ap-map has changed
since initialization. Let 𝑃 be the set of peers that completed
the latest write𝑊 and thus have a sequence number that is
at least 𝑠 . Thus, |𝑃 | >= 𝑓 + 1. Suppose a set of peers, 𝑃𝑜𝑙𝑑 ,
fails and the application replaces them with new peers, 𝑃𝑛𝑒𝑤 ,
by modifying the ap-map; |𝑃𝑜𝑙𝑑 | = |𝑃𝑛𝑒𝑤 |. Two sub-cases are

possible. First, no peer in 𝑃𝑜𝑙𝑑 is part of 𝑃 , i.e., no peer in 𝑃𝑜𝑙𝑑
was part of the 𝑓 + 1 quorum that completed𝑊 . Then, at
least 𝑓 + 1 nodes in the remaining nodes (𝑃 − 𝑃𝑜𝑙𝑑 ) will have
𝑊 and 𝑠 , ensuring that 𝑠 will be retrieved during recovery
(due to quorum intersection). Second, some peers in 𝑃𝑜𝑙𝑑 are
part of 𝑃 . Before replacing the ap-map, Ncl brings all peers
in 𝑃𝑛𝑒𝑤 up-to-date. Therefore, 𝑃𝑛𝑒𝑤 will have a sequence
number that is at least 𝑠 . Since𝑊 was committed in 𝑃 , all
nodes in 𝑃 − 𝑃𝑜𝑙𝑑 will also have𝑊 . Since |𝑃 | >= 𝑓 + 1 and
|𝑃𝑜𝑙𝑑 | = |𝑃𝑛𝑒𝑤 |, |𝑃 −𝑃𝑜𝑙𝑑 +𝑃𝑛𝑒𝑤 | >= 𝑓 + 1. Thus, at least 𝑓 + 1
in the modified ap-map will a have sequence number that is
at least 𝑠 and thus will be safely retrieved during recovery.
We now show that Ncl recovers all completed write-s

up to𝑊 . Let𝑊𝑠 be the sequence of write-s up to𝑊 . First,
assume the application never failed during𝑊𝑠 . Because Ncl
replicates write-s in order, if𝑊 is present on at least 𝑓 + 1
peers then all prior completed write-s will also be present on
at least 𝑓 + 1 peers. Thus, the current recovery will recover
𝑊𝑠 . Next, any future application recovery after this will also
recover at least up to𝑊𝑠 . Since Ncl brings at least 𝑓 +1 peers
up-to-date with𝑊𝑠 before proceeding to normal operation
and any peer that commits a new update must have seen up
to𝑊𝑠 , at least 𝑓 + 1 that are committing new updates will
have𝑊𝑠 followed by the new updates. This ensures that𝑊𝑠

survives in all future application recoveries.

Model Checking.We have modeled Ncl’s replication and
recovery protocols, and model-checked them. We explored
over 4million states; in each state, a fewwrites are performed
to ncl files and then peer and application failures are injected
at various points. Upon each state, the checker asserts that
the above correctness condition is met. We also introduced
subtle bugs in the model and the checker correctly flags
these bugs. For example, when a peer incorrectly writes the
sequence number before the data, a data loss can arise if the
peer becomes the recovery peer; the checker catches this
violation. Similarly, when the ap-map is incorrectly updated
before catching up a new peer or if the lagging peers are not
caught up during application recovery, a data loss is possible
and the checker flags these cases.

4.7 Implementation

We have implemented Ncl in C++ in about 2877 LOC. ncl-
lib intercepts all POSIX file operations and invokes the ap-
propriate Ncl operations. It uses the Infinity ibverbs-based
library [37, 38, 47] for RDMA over Converged Ethernet [74].
The O_NCL flag is understood only by ncl-lib and requires
no kernel modifications. We implement the controller us-
ing a fault-tolerant ZooKeeper [34] instance. The controller
maintains the information about log peers under a directory
called Peers; each peer creates a znode inside this directory
with its unique name as the key and the available memory as
the value. The controller walks these znodes to assign peers
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Figure 8. Write Latency – Embedded Mode. The figure shows

the latency to perform writes of different sizes in Ncl, weak-bench dfs, and

strong-bench dfs. Strong-bench issues a fdatasync after every write. Note that
the y-axis has a break to accommodate the huge disparity in latencies.

to an application. The controller maintains the ap-map struc-
ture in a directory called Apps; each application maintains a
znode in this directory with its identifier as the key and its
assigned peers and epoch number as the value.

Ncl requires that, for each Ncl-backed file, only one ap-
plication instance has access to it (although there can be
multiple writer threads within the application). Ncl guaran-
tees this by ensuring that only one instance of the application
runs at a time as follows. An application creates an additional
ephemeral znode (inside a directory called Servers) that is
removed by ZooKeeper upon application failures. When an
application instance recovers, it recreates the znode. If many
instances try to recreate the znode, ZooKeeper guarantees
that only the first creation will succeed.

Application Integration. We have ported three applica-
tions – RocksDB, Redis, and SQLite – to use Ncl. To port
these applications, we first identify in the source code the
function calls that open or create log files, and then pass
an additional O_NCL flag to the underlying POSIX open
call. This was a fairly straightforward exercise and expect
it to be even easier for application developers because they
understand the source code well already. Porting required
very minimal code change in all three applications: 10, 19,
and 6 LOC in RocksDB, Redis, and SQLite, respectively.

5 Evaluation

To evaluate Ncl and SplitFt, we ask the following questions:
• How does Ncl perform on a write microbenchmark? (§5.1)
• How do applications perform in the SplitFt paradigm com-
pared to Dft for a write-only workload? (§5.2)

• How do applications perform in SplitFt under different
YCSB workloads [49]? (§5.3)

• How does Ncl perform on reads (upon recovery)? (§5.4.1)
• How quickly do applications in SplitFt recover? (§5.4.2)
• How quickly does Ncl replace failed peers and what is im-
pact of peer failures on application performance? (§5.4.3)

Setup.We conduct our experiments on a cluster in CloudLab.
Each machine in the cluster has a 2.4GHz 10-Core E5-2640v4
CPU, 64GB DDR4 memory, a 25Gb Mellanox ConnectX-4
NIC, and a 480GB SATA SSD. We use CephFS as the underly-
ing dfs and host it on three machines. The application server
runs on a single machine. We use the remaining machines
as Ncl log peers and application clients. CephFS is mounted
on the application server via a CephFS kernel driver.
Application Configuration and Workloads. We have
ported three applications – RocksDB, Redis, and SQLite –
to use SplitFt. Each application is configured with a failure
budget of 𝑓 = 1, so Ncl assigns three (2𝑓 + 1) log peers to
each application. We run the applications as servers. Redis is
already built as a server and we use it as-is; we built a eRPC-
based [60] server for RocksDB and SQLite. Based on typical
cache sizes for key-value stores and databases [48, 79], we
set the cache size of RocksDB and SQLite application servers
to 30% of the dataset size; we use cgroup to limit the mem-
ory. We do not limit Redis’ memory since it is designed to
keep the entire dataset in memory. RocksDB and Redis em-
ploy application-level batching to batch concurrent update
requests into a single log write, while SQLite does not use
such a batching mechanism. We set SQLite’s locking mode
to exclusive since the database is accessed from a single
application-server process, reducing its locking overhead.
For both write-only and YCSB workloads, we use small

key-value pairs (24B keys and 100B values) typical in many
workloads [43]. We use 20 application-server threads to
run YCSB workloads for RocksDB and Redis, and show
single-threaded performance for SQLite since its perfor-
mance does not scalewith increasing threads.We plot latency
vs. throughput for the write-only workload and the through-
put for YCSB workloads. Each data point runs for at least
120s and is repeated three times; we plot the average of the
three runs, with error bars showing the standard deviation.
Baselines.We compare SplitFt against two baselines: weak-
app Dft and strong-app Dft. In weak-app Dft, the appli-
cations run in a weak configuration, where log writes are
buffered in the application server’s OS buffer cache and only
asynchronously flushed to CephFS. Thus, when the applica-
tion server crashes, acknowledged data in the cache is lost.
In strong-app Dft, the application flushes every log write
synchronously to CephFS. We configured CephFS to return
an fsync/fdatasync when the data is replicated to the buffer
cache of the CephFS servers. Ncl synchronously replicates
every write system call to ncl files on to the peers.

5.1 Microbenchmark: Ncl Write Latency

First, we measure Ncl’s write latency using a microbench-
mark that sequentially writes a 100MB file. The benchmark
issues write system calls of different sizes ranging from 128
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Figure 9. Latency vs. Throughput. (a) and (b) plot the latency versus throughput of strong-app Dft, weak-app Dft, and Ncl for a write-only workload in

RocksDB and Redis, respectively. (c) shows the throughput and latency for SQLite.
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Figure 10. YCSB. (a), (b), and (c) show the throughput under the YCSB workloads in RocksDB, Redis, and SQLite, respectively.

bytes to 8KB in single thread. Unlike most subsequent exper-
iments, this experiment runs the benchmark in an embed-
ded mode, i.e., the benchmark process directly links against
ncl-lib and hence does not incur network latency to submit
operations. We run two versions of the benchmark: strong
and weak. In strong, the benchmark issues an fdatasync after
every write, flushing the data to CephFS. In weak, the writes
are not flushed and so can be lost upon failures. In Ncl, every
write is synchronously replicated to the log peers, offering
strong guarantees. We measure and plot the average latency
of writes for each size. Figure 8 shows the result.

As shown, the strong version is significantly (two orders
of magnitude) slower than the weak and Ncl versions as it
flushes every write. Ncl’s latency is close to that the weak
configuration. For instance, with 128-byte writes Ncl’s la-
tency is 4.6 𝜇s, while weak’s latency is 1.2 𝜇s. However, while
the weak version risks data loss in case of a crash, Ncl pro-
vides stronger guarantees at almost the same level of latency.

5.2 Application Write-Only Benchmark

We next evaluate application performance in the SplitFt par-
adigm. We first compare the performance of SplitFt against
weak-app Dft and strong-app Dft for a write-only workload
in RocksDB, Redis, and SQLite.

Figure 9(a) and 9(b) show the results for RocksDB and Re-
dis. For both applications, we vary the number of clients and
plot the throughput and latency. As shown, in both applica-
tions, strong-appDft offers roughly two orders of magnitude

lower throughput and higher latency.With SplitFt, RocksDB
achieves a peak throughput of 266 KOps/s. We find that
SplitFt’s throughput is slightly better than weak-app Dft.
Deeper measurements revealed that with SplitFt, RocksDB
performs fewer IOs to CephFS, which reduces the writes
stalls, improving throughput. Redis in SplitFt achieves a
peak throughput of 100 KOps/s, closely approximating the
throughput of weak-app Dft (only 8% overhead), while of-
fering stronger guarantees. SplitFt offers the same level of
latency (a few 10s of 𝜇𝑠) as weak-app Dft but with stronger
guarantees. Figure 9(c) shows the result for SQLite. Similar
to RocksDB, SplitFt slightly improves over weak-app Dft
as it does fewer IOs on CephFS, and is much faster than
strong-app Dft.

5.3 Application YCSB Benchmark

We next evaluate application performance under YCSB work-
loads. We first load the application with key-value pairs and
then run different workloads. For RocksDB and Redis, we
load 100M key-value pairs. For SQLite, we load 10M key-
value pairs; we convert each YCSB operation into a SQLite
transaction. Figure 10 shows the result.

As shown, for all three applications, SplitFt’s throughput
on all workloads is almost the same as that of weak-app Dft.
For RocksDB, SplitFt’s performance overhead compared to
weak-app Dft is minimal: 0.1% to 3.2%, a small price to pay
for the stronger guarantees. Similarly, in Redis and SQLite,
the overheads are small (2.9% and 10.8% in the worst case).
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In all three applications, strong-app Dft offers signifi-
cantly lower throughput than SplitFt. In RocksDB, strong-
appDft has low throughput onwrite-heavyworkloads (YCSB-
A and YCSB-F) due to the high overhead of writes. Under
read-heavy workload (YCSB-B and YCSB-D), as expected,
the performance gap between strong-app Dft and SplitFt
reduces, and the gap closes for the read-onlyworkload (YCSB-
C). We observe similar trends in SQLite as well. With Re-
dis, strong-app Dft has low throughput on all workloads
except for the read-only workload. This is due Redis’ single-
threaded architecture, which results in head-of-line blocking.
Read operations, even though they do not require writes to
CephFS, are blocked by write operations before them. This
reduces the performance even for read-heavy workloads.

5.4 Recovery and Performance Under Failures

Thus far, we have analyzed failure-free performance. Next,
we examine recovery and performance under failures.

5.4.1 Microbenchmark: Ncl Read Latency

In most storage-centric applications, logs are the ones that
are classified as ncl files. As a result, these files are not read
during normal operation but only during recovery. When
an application recovers, it must recover the log from the
Ncl peers. We thus first measure the read latency of Ncl
for sequentially reading a file and compare it with reading
the file from underlying CephFS. We use a single thread to
sequentially read a 100MB file by issuing read-s of different
sizes ranging from 128 bytes to 8KB and plot the average
latency of a read operation. Figure 11(a) shows the result.

Ncl prefetches the file from the peers and serves subse-
quent read-s from the local buffer (Ncl). The latency for Ncl
in the figure includes the prefetch time; the prefetch time is
amortized among all reads. Prefetching helps Ncl reduce the
latency and thus is smaller than that of CephFS. For example,
Ncl is 4× and 28% faster than CephFS with 128-byte and 8KB
reads, respectively. We also show the performance for an Ncl
variant that does not prefetch the file. This variant performs
worse than CephFS (4.51× higher latency for 128-byte reads),
showing thatNcl’s prefetching is essential. Note that CephFS
client also prefetches data from the underlying file system.
Without prefetching, CephFS reads incur significantly higher
latency as shown by the direct IO line.

5.4.2 Application Failure Recovery

We next analyze how fast applications in SplitFt can recover
after a failure. During recovery, storage-centric applications
recover the log to reconstruct the state. In Dft, the applica-
tion recovers the log from CephFS, while in SplitFt, the logs
are recovered from Ncl. We measure the time to recover a
60MB log in RocksDB, Redis, and SQLite. We do not distin-
guish between weak- and strong-app configurations in this
experiment, as both recover the log from CephFS. We also
compare to recovering from an ext4 partition on local disk;

Step Time (us)
Get new peer from controller 3586

Connect to new peer and set up MR 64871
Catch up new peer 23368

Update ap-map on controller 4734
Total 96559

Table 3. Peer Recovery. Latency breakdown of recovering a new peer.

this baseline is used only as a comparison point and is not
realistic as the application is not guaranteed to have access
to the local disk upon a restart. Figure 11(b) shows the result.
First, the time to recover from CephFS is not very high

compared to local ext4 because CephFS prefetches data effec-
tively. Second, in all three applications, the time to recover
from Ncl is comparable to that of CephFS; both are in the
order of several hundred ms. Most of this time is spent in
application-level reading and parsing the log. Ncl’s recov-
ery is slower than CephFS (by 4%, 15%, and about 2× in
RocksDB, Redis, and SQLite, respectively). The slowdown in
Ncl is expected as Ncl must perform several steps in addi-
tion to reading and parsing the log at the application-level.
We breakdown the recovery latency in Ncl into five parts:
getting peer information from the controller (denoted as get
peer in the figure), connecting to peers (connect), prefetching
the log (rdma read), synchronizing the peers with latest data
(sync peer), and finally reading and parsing the log at the
application level (parse). The increased recovery time in Ncl
comes from the first four parts; application-level parsing
time is similar to that of CephFS. However, the additional
latency in Ncl is small and often is a tiny portion of the
overall time. Given that failures are rare and the log must
be recovered once during startup, Ncl’s increased recovery
time is a small cost to pay for its improved guarantees.

5.4.3 Peer Recovery

We now analyze how Ncl handles peer failures and the time
it takes to replace a failed peer with a new one. Table 3 shows
the latency breakdown of replacing a failed log peer that had
60MB of log before it crashed. The peer-recovery time has
four constituents: getting a new peer from the controller,
connecting to the new peer, catching up the new peer, and
updating the ap-map on the controller. Among these parts,
connecting to the new peer takes the most time, as the new
peer allocates a new memory region and registers it with the
RDMA stack, which can take about 50ms. However, this is the
worst-case scenario: in most cases, we expect a peer to have
a memory region that is already allocated and registered,
and thus overall latency would be much lower.

We next examine to what extent applications are affected
by peer failures and recovery. To do so, we run RocksDB
in SplitFt with three Ncl peers (i.e., 𝑓 = 1). In the unlikely
scenario where two peers fail simultaneously, writes can
block until Ncl finds a new peer. However, a single failed
peer must have little impact on availability or throughput.
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Figure 11. Recovery Performance. (a) shows the average read latency in Ncl and CephFS. (b) shows the recovery time for RocksDB, Redis, and SQLite.
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Figure 12. Application Performance Under Peer Failures.

We run a write-only workload and sample the real-time
throughput every 10ms. Figure 12 shows the result. Initially
all three peers are up and so RocksDB runs at full throughput.
After a while, two peers are simultaneously crashed, causing
the writes to stall. However, Ncl quickly finds a new peer
and the throughput returns to the normal level. We find that
the stall time is about 100ms, as the new peer allocates and
registers a new region, matching the data in Table 3. The
other failed peer is also replaced soon. When one peer is
crashed after that, there is no impact on availability as a
quorum is still available. The failure and subsequent catch
up causes a small performance blip for a very short duration
because of the bulk RDMA transfer to the newly added peer.

6 Discussion

We now discuss a few alternative design choices that can be
used to build the Ncl abstraction and argue why our choices
might be more desirable. We also discuss how Ncl can be
extended to other use cases and scenarios.
Choice of Replication Protocol. In principle, one could
use standard replication protocols like Paxos [63] or its vari-
ants [68, 76] to replicate small writes. We chose to implement
our own protocol because standard replication protocols are
not optimal for our use case. First, standard protocols run the
entire application on all replicas. In contrast, our protocol
treats the peers as passive memory units that do not run the
application. Further, we perform replication using 1-sided

RDMA-writes, without any CPU involvement.
Persistent Memory (PM) Logging. Persistent memory
(PM) devices attached to the application servers can offer
low-latency and high-throughput logging for applications.
However, Ncl’s design to replicate writes to remote peers is
crucial even with PMs. This is because even with PM, a single
hardware failure can render the logged data (on local PM)
unavailable. Further, in modern datacenters, an application
might be scheduled on a different physical hardware after a
failure and thus may be unable to access the PM.
Supporting Non-Log Files and Applications. In our cur-
rent port of applications, only log files utilize Ncl. If non-log
files have a frequent, small-write access pattern, they can
also benefit from Ncl. As discussed in §4.7, developers have
more knowledge of such files and can decide whether or not
a file is a good Ncl candidate. This is a one-time effort and
requires just adding a flag to open.

Our focus in this work was on widely used storage-centric
applications. Most of them employ logging for durability and
crash recovery (§3). However, a few stores like KVell [66] do
not log. Ncl can still be useful for such applications. Appli-
cations that do not log tend to issue many random writes.
While such random writes might perform well with NVMe-
SSDs, it can hurt performance in the Dft setting. Ncl can act
as a faster tier to absorb the random writes and then write
large chunks to dfs, improving performance.
Support for Fine-Granular Write Splitting. In our cur-
rent implementation, we distinguish files that receive small
writes from files that receive mostly large bulk writes. How-
ever, some applications may perform both small and large
writes to the same file. To support such applications, Ncl
must split writes in a more fine-granular manner (than at
a file level). To do so, one solution would be to set a size
threshold such that writes smaller than the threshold go to
Ncl, while writes larger than the threshold go to dfs. In order
to recover the file, SplitFtwould track where (Ncl or dfs) the
latest data resides for different byte ranges. This metadata
can be conveniently stored in the Ncl layer.
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7 Related Work

Fault-Tolerance for Storage Applications. In addition
to traditional fault-tolerance approaches such as consen-
sus [63, 68, 76] and primary-backup [42], several optimized
protocols have also been proposed [40, 62, 88–90]. However,
most of these protocols still suffer from high resource costs
and require modifications to applications. A few approaches
reduce cost [88] but still require application changes. Ap-
proaches such as whole VM replication [41, 50, 86] offer
full application transparency but often have huge overhead.
Further, these approaches cannot utilize the large storage
capacity of a shared storage service unlike the Dft paradigm.
Shared-Log-based Fault-Tolerance. Shared logs [35, 36, 51,
59] offer an alternative way to realize fault-tolerance. How-
ever, most applications must be redesigned to use shared
logs; thus, legacy POSIX applications cannot readily benefit.
Further, while shared-log designs help applications make up-
dates fault-tolerant efficiently, they do not help with storing
large blobs of data (e.g., sstables in RocksDB), a key require-
ment in storage-centric applications. SplitFt uses Ncl to
offer functionality similar to shared logs but also leverages
the underlying dfs to store large blobs of data. Kafka [32] and
other message queues [33] also can be used to log updates
in a fault-tolerant manner. However, they incur additional
CPUs and disks unlike SplitFt that uses only spare memory.
Re-architectingApplications for the Cloud. Recent work
has proposed to re-architect storage applications for cloud-
native settings; these approaches often decompose mono-
lithic applications for better elasticity and resource manage-
ment [18, 31, 45, 95]. Similarly, prior work also extensively
modify storage applications for disaggregated settings or to
leverage RDMA [39, 57, 94]. While such complete redesigns
might be possible in some cases, it is often difficult to change
existing POSIX applications. SplitFt offers a way for these
applications to realize stronger guarantees and higher per-
formance in the data center in a transparent fashion.
RDMA-based Replication. Recent systems leverage RDMA
for fast replication [27–29, 65]. However, prior systems still
use the application-level fault-tolerance paradigm and lever-
age RDMA to make it faster, unlike Dft and SplitFt. Ncl’s
replication protocol bears similarities to Mu’s replication pro-
tocol [28]. A key difference is that prior RDMA-replicated
systems run the full application on all replicas, incurring
significantly high resource costs. In contrast, Ncl treats the
log peers as passive memory units.
Remote and Disaggregated Memory. While Ncl uses the
underutilized or unallocated memory on compute nodes to
build a fault-tolerant-log abstraction, prior systems have
proposed to use the spare memory for other purposes. For
example, Infiniswap [54] and others [30] use it as swap space,
enabling higher performance for applications with large
working sets. Similarly, other systems use the spare memory

as a cache [93, 97] to improve performance. Finally, prior sys-
tems have proposed better abstractions than RDMA ibverbs
to export memory on one server to others [26].
Message Logging. SplitFt has some similarities to message-
logging systems [80, 91] that log messages or state on other
nodes while only asynchronously persisting to stable storage.
However, SplitFt’s context (disaggregated datacenters) and
use case (storage-centric applications) are different from this
body of work. Further, SplitFt’s design to transparently and
CPU-efficiently (via RDMA) replicate application writes are
different from prior approaches.
Durability vs. Performance in Local Storage. The trade-
off between durability guarantees and performance exists in
local storage systems as well. A few file systems offer high
performance with prefix semantics, where recent writes may
be lost [46, 77]. Weak configurations of applications in Dft
offer a similar guarantee, which SplitFt improves without
performance overhead. Other systems that defer durability
until externalization [73] cannot be readily applied to the
Dft setting as clients must be acknowledged in a timely
manner for low latencies while offering strong durability.
Optimizing Small Writes. Local file systems have opti-
mized small writes by using a write-optimized index as a file
system [58] (which converts small writes to large sequential
transfers) or by storing metadata (which usually receives
small writes) in a key-value store that converts small writes
to sequential writes [83]. Our approach of treating small
writes differently has a similar flavor.

8 Conclusion

This paper introduces SplitFt, a new fault-tolerance ap-
proach for storage-centric applications in disaggregated data
centers. SplitFt performs bulk, background writes directly
on the underlying disaggregated storage, while making mak-
ing small writes fault-tolerant using a new near-compute log

abstraction. Ncl replicates writes to remote memory within
the compute cluster efficiently via 1-sided RDMA writes.
SplitFt offers a way for storage-centric applications in dis-
aggregated data centers to realize strong guarantees without
compromising performance.
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A Artifact Appendix

A.1 Abstract

The near-compute log (Ncl) library replicates write-ahead
logs of storage-centric POSIX applications (e.g., databases,
key-value stores) to underutilized memory on remote nodes.
This artifact contains the source code to build Ncl library, as
well as the benchmarks to evaluate Ncl.

A.2 Description & Requirements

The source code ofNcl is available at https://github.com/dassl-
uiuc/compute-side-log. The source code of the benchmark is
available at https://github.com/dassl-uiuc/YCSB-cpp. To test
the basic functionalities, one needs at least two machines
equipped with RDMA NICs. The full evaluation requires
eight machines and at least five of them need to be equipped
with RDMA NICs:

• one machine as the application client node (RDMA re-
quired)

• one machine as the application server node (RDMA re-
quired)

• three machines as the Ceph cluster and has CephFS de-
ployed

• three machines as the memory replicas for Ncl (RDMA
required)

Testing the basic functionalities is relatively simple and
evaluators may use their own hardware if they have RDMA
machines. If you don’t have RDMA machines and would like
to setup by your own we recommend using CloudLab xl170.

The full evaluation requires more dependencies including
setting up a Ceph cluster. To ease the procedure of setting
up the environment, during the artifact evaluation period,
we provided the already-setup machines and evaluators can
ssh into them to run the evaluation. Our evaluation cluster
consists of eight CloudLab xl170machines.We recommended
the evaluators use our provided machines.

A.2.1 How to Access

During the artifact evaluation period, we set up an 8-node
cluster on CloudLab for reviewers to run the experiments.
The cluster is not available now. Please see benchmark doc-
ument for instructions on how to set up your own experi-
mental cluster.

A.2.2 Hardware Dependencies

Machines equipped with RDMANICs (Mellanox ConnectX-4
25 Gb or better to match the performance in our paper).

A.2.3 Software Dependencies

Ubuntu 20.04 operating system. For complete software de-
pendencies, please refer to ourNcl document and benchmark
document.

A.2.4 Benchmarks

We use YCSB benchmark. During the artifact evaluation, any
data required was provided on our machines. To run YCSB
benchmark on your own cluster, you need to first gener-
ate the base database for each application evaluated. The
instructions to generate base databases is in the benchmark
document.

A.3 Setup

Our evaluation cluster needs no additional setup. To setup
your own cluster, see Ncl document and benchmark docu-
ment.

A.4 Evaluation Workflow

For kick-the-tires, please see Ncl document for steps to test
basic functionalities. This section discusses the comprehen-
sive evaluation.

A.4.1 Major Claims

• (C1): Ncl has good write latency. This is proved by the
write microbenchmark described in §5.1. Results are
shown in Figure 8 in the paper.

• (C2): Ncl has good write performance for three ap-
plications (RocksDB, Redis, and SQLite). It achieves
the same level of fault tolerance as strong apps while
offering the same level of latency and throughput as
weak apps. This is proved by the write-only workload
described in §5.2. Results are shown in Figure 9 in the
paper.

• (C3): Ncl has good performance in YCSB benchmark.
It offers same level of throughput as weak apps and is
much better than strong apps in update-heavy bench-
marks. This is proved by YCSB benchmark described
in §5.3. Results are shown in Figure 10 in the paper.

• (C4): Ncl can fast recover log files from replicas. This
is proved by read benchmark and measuring recovery
time for 3 applications. Results are shown in Figure 11
in the paper.

A.4.2 Experiments

Please see benchmark document for detailed instructions for
running the experiments.

A.5 Notes on Reusability

For usage of Ncl see General Usage for directions. For de-
velopment upon the code base, the code is documented. You
can run doxygen ./Doxyfile to generate html document
of Ncl. After generation, the document can be viewed from
./html/index.html.
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