
Beyond Storage APIs: Provable Semantics for Storage Stacks
Ramnatthan Alagappan Vijay Chidambaram Thanumalayan Sankaranarayana Pillai

Aws Albarghouthi Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau
University of Wisconsin-Madison

Abstract
Applications are deployed upon deep, diverse storage
stacks that are constructed on-demand. Although many
storage stacks share a common API to allow portabil-
ity, application behavior differs in subtle ways depend-
ing upon unspecified properties of the underlying storage
stack. Currently, there is no way to test whether an ap-
plication will behave correctly on a given storage stack:
corruption or data loss could occur at any point in the ap-
plication lifetime.

We argue that we require an expressive language for
specifying the complex storage guarantees required by
different applications. The same language can be used
to write a high-level specification capturing the design of
different storage-stack layers. Given the required guar-
antees, and the storage-stack specifications, we can prove
that stacks constructed dynamically (by composing differ-
ent storage-stack layers) provide the guarantees required
by the application.

1 Introduction
Modern applications are deployed in a variety of environ-
ments [2, 13, 15, 24, 31]: on laptops, on mobile phones,
on tablets, and on private and public clouds. Each envi-
ronment involves a different storage stack: for example,
the laptop might use the btrfs file system on top of a
SATA drive [10], while the mobile phone might use F2FS
on top of an SSD [11, 26]. With the advent of software-
defined storage, we believe applications will soon be able
to request and automatically obtain customized storage
stacks [20, 25, 32]. Amazon EC2 already does this at a
coarse level by allowing users to specify the storage they
require for each virtual machine [1]. The day is not far off
when storage stacks will be constructed on the fly, mix-
ing and matching different layers like block re-mappers,
logical volume managers, and file systems [39, 40].

Users would like their applications to run on different
environments without modification [2]. In addition to re-
ducing development effort (and bugs), application porta-
bility avoids vendor lock-in [7,14], where an application is
tied to a particular stack because it uses features unique to
that stack. To achieve application portability, many ven-
dors strive to provide API compatibility with popular ven-
dors like AWS [9, 12]. For example, OpenStack uses the
same API as Amazon’s cloud services to allow users like

Intel, Yahoo, and Walmart to easily port their applications
from services like Amazon EC2 to OpenStack Nova [9].

Unfortunately, while a common API guarantees that
applications will execute on different stacks, it does not
guarantee that they will do so correctly. Most API spec-
ifications simply describe what operations are offered by
the storage stack. The specifications do not describe the
semantics offered by the system: for example, whether
two operations are persisted in order or whether an oper-
ation is persisted atomically. Yet, recent work has shown
that application correctness hinges on storage-stack se-
mantics [34, 35, 43]. For example, LevelDB [22] required
the rename of a file to be persisted before the unlink of
another file. If the storage stack does not order these op-
erations, it results in data corruption [8, 34].

Testing whether an application will behave correctly on
a storage stack is challenging for two reasons. First, the
guarantees that an application requires from storage are
not well-specified; if the developer has only been testing
on one platform, they may not even realize that their ap-
plication depends on certain features of the platform. Our
work on application crash vulnerabilities suggests that the
required guarantees are complex, and cannot be expressed
in simple binary checks or numeric limits [34]. Second,
modern storage stacks are composed of many layers (e.g.,
the Windows IO stack has 18 stackable layers [38]). Each
layer builds upon the guarantees given by lower layers to
provide guarantees to higher layers. To identify the guar-
antees given by a dynamically composed stack, we have
to examine the guarantees given by each layer in the stack.

We tackle each challenge by borrowing techniques
from the programming languages community. First, we
propose to specify complex storage guarantees in a for-
mal language (such as Isar [42]). We suggest that the same
language could be used to specify the high-level design of
each layer of the storage stack. Second, proof assistants
(such as Isabelle [33]) can be used to prove that the stack
provides the guarantees required by the application. Just
as a statement could be proved given a collections of ax-
ioms and theorems, we propose that guarantees required
by applications could be proved given the guarantees of-
fered by each storage-stack layer.

We believe such verification will be essential for
software-defined storage in clouds and datacenters. When
storage stacks are constructed on the fly, the correspond-

1

Setup Consequence Root Cause
1 Android 4.4

Micro SD Card
All applications using the Micro SD card for
implementing virtual IPC to micro controller
affected

O DIRECT flag for direct I/O operations on the removable
storage not implemented in Android 4.4. It was available
in previous versions.

2 Android 4.2.x
FAT32 SD Card

Errors not allowing sqlite to create tempo-
rary files

sdcard daemon emulating FAT32 FS cannot do fstat of an
open but unlinked file. Also, there is no support for ext
family of file systems on SD Cards.

3 Android 2.x 4.x
Internal SD Card

Cannot open more than 1024 files at a time
across Apps

Device internal SD cards are limited to only 1024 open
file descriptors. Occurs only with internal SD card on few
device types.

4 Google AppEngine
Cloud Storage
Dev Server

Local deployment of applications that use
long filenames fail

Occurs only on some filesystems including btrfs and
NTFS because of the limit in path length. Not yet repro-
duced on Google Cloud Storage deployments.

5 MySql over
NFS/FreeBSD

Frequent restarts of MySql Occurs only when NFS server is running on FreeBSD and
the client also runs FreeBSD. fsync calls on FreeBSD
return ENOLCK even when the flush was successful.
MySql considers this as a fatal error.

6 Git on DropBox directory Inconsistent commit histories The order in which updates are synchronized to DropBox
is different from local file-system updates. Specifically,
commit metadata is synchronized before the user data.

7 Sqlite on DropBox direc-
tory

Corrupt Sqlite database The order in which updates are synchronized to DropBox
is different from local file-system updates. Specifically,
the log file is unlinked before synchronizing the database
file completely.

8 Git repository backed up
by rsync

Corrupt and unusable repository rsync synchronizes the git index and the added source files
before the corresponding object files.

Table 1: Portability Bugs. The tables lists bugs that occur when the storage stack doesn’t provide features or guarantees required by
the application. For each bug, the table shows the environment, the consequence, and the underlying root cause. The root causes vary from easily
detectable issues like O DIRECT not being supported, to deeper issues like ordering guarantees not provided by the stack.

ing high-level specifications for different layers can be re-
trieved, and the guarantees of the resulting stack can then
be compared with application requirements. Such check-
ing can be used to construct the optimal storage stack (in
terms of resource utilization or other metrics) that will sat-
isfy the given application requirements.

In the rest of the paper, we first present a small study
of bugs that occur when applications are ported to dif-
ferent storage stacks (§2). We then describe in detail the
challenges in verifying that a storage stack provides re-
quired application guarantees (§3). We describe our ex-
perience in specifying the design of a simple two-layer
storage stack in Isar, and using Isabelle to prove that the
put operation in a simple key-value store is atomic (§4).
Finally, we describe remaining challenges in realizing this
vision (§5), discuss related work (§6), and conclude (§7).

2 Portability Bugs
We now present a small selection of portability bugs: bugs
that occur when applications are ported to different stor-
age stacks. To find these bugs, we searched the public bug
databases of projects deployed on different storage stacks.
For example, Android is installed on a variety of mobile
phones and tablets; thus, we expected to find portability
bugs in Android. We also investigated applications run
on cloud platforms like Google AppEngine, and in dis-
tributed settings like NFS. In addition to examining public
bugs, we also performed experiments that revealed bugs
on widely-used environments that loosely coupled local
storage with cloud or remote storage.

Table 1 lists eight application bugs that are caused by
the storage stack failing to provide a guarantee required
by the application. For each bug, we specify the setup in
which it occurs, its consequence, and the root cause.

The first five bugs are listed in the public bug databases
on Android, Google App Engine, and MySQL. They re-
sult from the stack not supporting certain operations (#1,
#2), placing unexpected limits on resources (#3, #4), or
returning unexpected error codes (#5).

The last three bugs were revealed in our experiments.
Our work on application crash vulnerabilities [34, 35]
demonstrated that applications such as Git [30] and
SQLite [36] require ordering guarantees from the stor-
age stack. For example, SQLite requires that its journal
writes are persisted before checkpoint writes. SQLite or-
ders these writes using fsync(). On a local file-system,
this works perfectly: the writes are persisted in the re-
quired order on local storage. If the local storage is then
synced to a remote location or cloud storage (as is widely
done with Dropbox [6]), the order in which the files are
uploaded matters: a network outage could result in the re-
mote location seeing inconsistent application state. Drop-
box transfers files roughly based on file size [4, 5], while
rsync seemingly transfers files sorted by name [3]. Based
on this, we conducted the following experiment: run the
application inside a folder synced using Dropbox or rsync;
perform an application operation such as inserting into
SQLite database; emulate network outage while Dropbox
or rsync is in the middle of the sync process; inspect ap-
plication state in remote location. All three experiments

2

resulted in application inconsistency and/or data corrup-
tion. Similar bugs would be caused for any application
that requires ordering from the stack [34].

3 Avoiding Portability Bugs
To avoid portability bugs, we need to verify that the
stack provides the storage guarantees required by the ap-
plication. The first challenge is in identifying the re-
quired storage guarantees. The developers may be un-
aware that they are depending upon guarantees from the
storage stack: hundreds of Linux applications (written for
ext3) depended on data written to a file being persisted
before its rename, and lost data when ext4 no longer pro-
vided this guarantee [18]. Tools like ALICE [34] can help
the developer identify storage guarantees required by the
application. Assuming that the application developer is
willing to identify and describe the storage guarantees re-
quired, there remain two challenges: specifying the guar-
antees, and checking that it is provided by the stack.

Specifying Storage Guarantees. For some portabil-
ity bugs, specifying the required guarantee is simple: for
example, one could have a binary check for O DIRECT
support. Specifying a minimum limit on resources like
path names or file descriptors is also straightforward. In
other cases, the storage guarantees required are complex.
For example, Mercurial and LevelDB require that a file
append (e.g. “XYZ”) results in a prefix of the append
data being persisted (e.g., “X” or “XY”) [34]. Many guar-
antees are of the form “if not A then B else C should
hold”, and cannot be easily expressed in the form of bi-
nary checks or numerical limits. Specifying storage guar-
antees thus requires a rich, expressive language.

Computing and Verifying Stack Guarantees. Mod-
ern storage stacks are comprised of several layers [38].
The storage media at the bottom provides some basic
guarantees. The layer above the media builds on these
guarantees to provide more guarantees to the layer im-
mediately above; thus, guarantees are built up over the
stack and the top-most layer (e.g., a database) provides
guarantees to the application (e.g., atomic transactions).
Software-defined storage can dynamically add or remove
stack layers like block re-mappers; calculating how the
addition or removal of a layer from the stack affects
storage guarantees requires understanding how that layer
works (at least at a high level) along with the layers above
and below. Therefore, we cannot statically assign guaran-
tees to layers – it must be dynamically calculated.

Thus, verifying correct application behavior on a stor-
age stack is a hard problem, requiring more sophisticated
techniques than simple API compatibility tests.

4 Verifying Storage Guarantees
We now describe how we envision a system that can prove
that a storage stack has certain guarantees. We start by

Figure 1: System Architecture. The figure shows a typical
workflow – the application specification, correctness requirements, and
storage stack configuration are obtained as input, appropriate specifi-
cations from the prebuilt library are selected, and finally, the required
guarantees are proved/disproved.

specifying the guarantees required by the application at
the topmost layer of the storage stack, the working logic of
each layer, and the guarantees provided by the lowermost
layer. Using the guarantees of the lowermost layer and the
specification of each higher layer, we can progressively
calculate the guarantee provided at each layer. Finally,
we can verify whether the guarantees at the topmost layer
satisfy the application’s requirements. Figure 1 provides
a high-level overview of the system.

Specifying guarantees at the topmost layer and the
working logic of all layers is not straightforward. Sub-
section 4.1 explains how we use the Isar formal proof lan-
guage [42] for solving this, and why we think this can
be performed with reasonable effort in the future. Sub-
section 4.2 explains how we use the Isabelle proof assis-
tant [33] for computing and verifying the guarantees for
each layer. Subsection 4.3 describes our experience in us-
ing Isar and Isabelle to prove that a simple key-value store
operating on raw block storage provides atomic put()
operations. We have made the Isabelle scripts described
in this section available online [37].

4.1 Specifying Storage-Stack Layers
The working logic specification of each layer essentially
describes how an operation exposed by that layer works.
For example, a file-system layer will expose how it per-
forms operations like rename or unlink and a block
layer will expose how it reorders write requests. Isar al-
lows expressing specifications in terms of functions, and
these specifications can then be used by proof-assistant
tools. We have found the Isar language to be sufficient for
specifying the guarantees and the working logic of storage
stacks we have investigated so far.

While writing specifications is made possible by Isar,
the specifications can be complex; we found specifying
the working logic of non-trivial storage layers to be a diffi-
cult process. However, in the future, we envision a library

3

of specifications of widely used filesystems, hypervisors,
and storage devices: users can simply plug-in the specifi-
cations, instead of writing them anew.

Users can provide a specification of the application,
and then provide correctness requirements in terms of
application-level operations (e.g., transactions must be
atomic). Given the application specification, Isabelle can
translate correctness requirements into storage guaran-
tees. Alternatively, the required guarantees can be auto-
matically obtained by using tools like ALICE [34].

4.2 Computing Storage Guarantees
Proof assistants like Isabelle can be used to generate
proofs for statements in the context of axioms and the-
orems. We treat the storage guarantees required by the
application as statements to be proved; the storage guar-
antees of the stack provide the axioms using which the
statement should be proved. For multi-layers stacks, the
guarantees given by each layer function as axioms for the
layer above; the guarantees given by the storage media
form the axioms for the lower-most layer.

When Isabelle is unable to prove the given state-
ment, its response (which sometimes includes a counter-
example) can be parsed to identify which layer in the stor-
age stack is preventing the high-level property from being
provided. Currently, we write machine-checked proofs by
hand in Isabelle; in section 5, we discuss opportunities
and challenges in constructing proofs in an automatic way.

4.3 Example: Key-Value Store
Consider a key-value store that runs directly on top of
block storage. The block storage provides 4K-block
atomic writes and in-order block operations. We want
to verify that the key-value store provides atomic put()
operations in the presence of system crashes.

We first write a specification for the key-value store op-
erations. For example, the specification describes how the
put() operation is performed. The key-value store in
our example writes small key-value pairs to a single block
directly, but uses journaling for large key-value pairs. A
dedicated portion of the disk is used as a journal, the up-
date is written initially to this area, and then checkpointed
to the actual disk location. If a crash happens, the key-
value store tries to recover from the journal.

We then specify the guarantees provided by the block
storage: 4K-block writes are atomic and ordered. This
forms the set of axioms on top of which Isabelle builds
proofs. Finally, we specify the application requirements
using Isar: put() must be performed atomically, even in
the case of a crash. This forms the correctness require-
ments that we will try to prove using Isabelle.

We break the proof into two parts: one for small key-
value pairs that fit into a single block and the other for
large key-value pairs that do not fit into a single block. For

theorem atomic_only_for_one_block:
assumes A0: "disk.length > index"
assumes A1: "disk != NULL"
shows
"key.length + value.length <= block_size
==>
isatomicupdate disk (kv_put disk key value

index)"

Listing 1: Atomicity theorem for update that spans one
block. The listing shows the pseudocode theorem for atomicity of put()
operation. isatomicupdate is a function that checks if two disks
differ only by one block. Note that this listing is pseudocode and not
exact Isabelle/Isar syntax.

the first part, we prove that if the key-value pair is smaller
than a block, it will be written atomically; Listing 1 shows
the corresponding logical statement expressed in Isabelle.
For the reader, this statement might be intuitive, since the
underlying block layer provides atomic 4K-block writes.
Nonetheless, proving this seemingly simple statement re-
quires lot of effort.

For the second part of the proof, we proved that an up-
date done using the journaling technique is always atomic
with one exception: the update being larger than the jour-
nal. The atomicity guarantee of a put() operation that
updates two blocks can be logically expressed as follows:
(final[i]=initial[i] ∧ final[j]=initial[j]) ∨ (final[i]=key ∧
final[j]=value), where initial is the state of the disk before
the put() started, final is any disk state resulting from a
crash while performing the put(), and i and j are the in-
dexes updated. The above logical statement should hold
for all possible final disk states. We also proved that the
update is durable if the checkpoint is complete. We dis-
covered that the proof effort required significantly varies
depending on how the requirements are specified. As we
gain experience with Isabelle proofs, we will be able to
prove guarantees with considerably lesser effort.

This simple example illustrates a few key features about
our system. First, given the specification of different stack
layers, our system can find dependencies across layers,
thus finding corner cases that may not be obvious to a hu-
man. Second, the system can be incrementally extended:
the specification of each layer does not need to know how
the layer below works. A new file system requires only
one new layer. We believe this supports our vision of
building a library of high-level specifications that can be
used to verify guarantees of different storage stacks.

5 Challenges
We discuss the challenges that remain in realizing our
vision of achieving application portability across diverse
storage stacks.

Obtaining Specifications. We assume that the develop-
ers of the storage-stack layers will provide specifications
along with the source code. Figuring out the specifica-

4

tions without developer support will be hard; we take
heart from the fact there are only a few choices available
for each layer. For example, most stacks use one among a
few popular file systems. Thus, a modest amount of man-
ual work can create a library that can reused by a large
number of storage stacks.

Interplay Between Layers. When a layer uses function-
ality from a lower layer, Isabelle can use the guarantees
given by the lower layer to prove guarantees at the up-
per layer. However, this is currently done by directly us-
ing lower-level functions in the specification of the upper
layer. Modifying this so that the upper layer uses a generic
intermediate layer (like VFS), with parameters that select
different lower layers, remains a significant challenge.

Automatically Proving Guarantees. Given the storage-
stack specifications and the application’s correctness re-
quirements, we can use Isabelle to automatically figure
out what guarantees need to hold across layers for the re-
quirement to be proved. Isabelle still requires the user
to specify different strategies (e.g., induction) to try and
prove the goal. For the proofs we have developed, Isabelle
required (non-trivial) guidance in terms of what strategies
to employ. In the future, we would like to model specifica-
tions and requirements in a fragment of first-order logic,
and use SMT solvers (automated theorem provers) such
as Z3 [19] to automatically prove guarantees. Unlike Is-
abelle, using Z3 limits what we could prove automatically
– we plan to carefully investigate this. The advantage of
using Z3 is that it allows automatic verification without
user involvement for dynamically changing stacks.

Proofs Without Layer Specifications. We currently as-
sume that all layer specifications are publicly available.
However, companies may be hesitant to reveal their layer
specification publicly. Thus, we would require a way to
prove that a stack provides certain guarantees, without
having the specifications of the layers that comprise the
stack. Akin to zero-knowledge proofs [21], we would
need each layer to verify that they provide certain guar-
antees, while hiding the details of how exactly they pro-
vide each guarantee. Each layer only needs to know the
guarantees associated with the operations exported by a
lower layer, and not how the operations are implemented.
Hence, we would still be able to prove the guarantees pro-
vided by the stack overall. Achieving this would allow
application correctness to be verified on stacks composed
of layers developed by many different companies.

6 Related Work
Recent work has applied verification techniques to build
verified operating system kernels [29], end-to-end secu-
rity [23] and in-kernel interpreters [41]. Various efforts in
the past have modelled and verified file-system implemen-

tations specifically. Keller et al. observe that modern file
systems are modular; this facilitates specifying each mod-
ule (or on-disk data structure) formally and then generat-
ing code and correctness proofs [28]. Arkoudas et al. for-
mally specify a simple abstract file system and prove the
implementation correct by establishing a simulation rela-
tion between the abstract specification and the implemen-
tation [16]. Similarly, Kang et al. show how a flash-based
file system can be formally verified [27]. While such work
focuses on verifying the file system in isolation, we aim
to verify end-to-end application correctness on different
storage stacks (of which file systems are only one com-
ponent). Our methodology matches closely with a recent
work to verify network-wide invariants of SDN applica-
tions by Ball et al. [17].

7 Conclusion
To truly realize the potential of software-defined storage,
infrastructure providers must construct customized stor-
age stacks on demand that satisfy customer requirements
while optimizing metrics such as utilization. A key part
of satisfying the customer is verifying that the applica-
tion will execute correctly on the constructed stack. In
this paper, we have shown why this is challenging: ap-
plications depend on subtle guarantees of the underlying
storage stack, that are more complex than the simple func-
tionalities defined by typical API documentation. Log-
ically specifying these guarantees, and verifying whether
different layers can provide these guarantees, is a complex
and unsolved problem. While we have taken the first steps
in solving this problem, significant challenges remain. We
hope future research tackles these challenges, thus making
applications truly portable across diverse storage stacks.

Acknowledgments

We thank the anonymous reviewers and ADSL lab
members for their insightful comments and feedback.
This material is based upon work supported by the NSF
grants CNS-1421033, CNS-1319405, and CNS-1218405
as well as generous donations from Cisco, EMC, Face-
book, Google, Huawei, IBM, Microsoft, NetApp, Sam-
sung, Seagate, and VMWare. Vijay Chidambaram is sup-
ported by a Microsoft Research PhD Fellowship. Any
opinions, findings, and conclusions, or recommendations
expressed herein are those of the authors and do not nec-
essarily reflect the views of the NSF or other institutions.

References
[1] Amazon Instance Storage. http://docs.aws.

amazon.com/AWSEC-2/latest/UserGuide/

InstanceStorage.html.

5

http://docs.aws.amazon.com/AWSEC-2/latest/UserGuide/InstanceStorage.html
http://docs.aws.amazon.com/AWSEC-2/latest/UserGuide/InstanceStorage.html
http://docs.aws.amazon.com/AWSEC-2/latest/UserGuide/InstanceStorage.html

[2] Application portability in action: A demonstration of cloud
foundry core. http://www.centurylinkcloud.

com/blog/post/portability-in-action-a-

demonstration-of-cloud-foundry-core.

[3] Debian Bug report logs. rsync: should not reorder the file names
on the command line. https://bugs.debian.org/cgi-

bin/bugreport.cgi?bug=640492.

[4] Dropbox Datastore API. http://www.dropbox.com/

developers/blo-g/78/datastore-api-growth.

[5] Dropbox Sync. https://www.dropbox.com/en/help/9.

[6] Git on Dropbox. http://stackoverflow.com/

questions/1960799/using-git-and-dropbox-

together-effectively.

[7] How to Avoid Cloud Vendor Lock-In. http://www.

linuxinsider.com/story/79417.html.

[8] LevelDB - Issue 189: Possible bug: fsync() required after call-
ing rename(). https://code.google.com/p/leveldb/

issues/detail?id=189.

[9] OpenStack EC2 Compatibility API. http://docs.

openstack.org/admin-guide-cloud/content/

instance-mgmt-ec2compat.html.

[10] openSUSE 13.2 To Use Btrfs By Default. http:

//www.phoronix.com/scan.php?page=news_

item&px=MTYzNjA.

[11] Review: In its second generation, the Moto X becomes a true flag-
ship. http://arstechnica.com/gadgets/2014/09/

review-in-its-second-generation-the-moto-x-

becomes-a-true-flagship/3/.

[12] Swift api feature comparison. https://wiki.openstack.

org/wiki/Swift/APIFeatureComparison.

[13] Titanium Mobile Development Environment. http://www.

appcelerator.com/titanium/.

[14] Watch out for that cloud lock-in. http://www.zdnet.com/
article/watch-out-for-that-cloud-lock-in/.

[15] Xamarin. http://xamarin.com.

[16] Konstantine Arkoudas, Karen Zee, Viktor Kuncak, and Martin Ri-
nard. Verifying a file system implementation. In Formal Methods
and Software Engineering, pages 373–390. Springer, 2004.

[17] Thomas Ball, Nikolaj Bjørner, Aaron Gember, Shachar Itzhaky,
Aleksandr Karbyshev, Mooly Sagiv, Michael Schapira, and Asaf
Valadarsky. Vericon: Towards verifying controller programs in
software-defined networks. In Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’14, pages 282–293, New York, NY, USA, 2014.
ACM.

[18] Jonathan Corbet. That massive filesystem thread. http://lwn.
net/Articles/326471/, March 2009.

[19] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt
solver. In Tools and Algorithms for the Construction and Analysis
of Systems, pages 337–340. Springer, 2008.

[20] EMC. Rethink Storage: Transform the Data Center with EMC
ViPR Software-Defined Storage. ttp://www.emc.com/

collateral/white-papers/h11749-transform-

data-center-with-vipr-software-defined-

storage-wp.pdf.

[21] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowl-
edge complexity of interactive proof systems. SIAM Journal on
computing, 18(1):186–208, 1989.

[22] Google. LevelDB. https://code.google.com/p/

leveldb/, 2011.

[23] Chris Hawblitzel, Jon Howell, Jacob R Lorch, Arjun Narayan,
Bryan Parno, Danfeng Zhang, and Brian Zill. Ironclad apps:
End-to-end security via automated full-system verification. In
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI), 2014.

[24] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu. Revisiting
Storage for Smartphones. In Proceedings of the 10th Conference
on File and Storage Technologies (FAST ’12), San Jose, California,
February 2012.

[25] InfoStor. Emerging Trends in Software Defined Stor-
age. http://www.infostor.com/storage-

management/virtualization/emerging-trends-

in-software-defined-storage-1.html.

[26] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum Son, and
Youjip Won. I/o stack optimization for smartphones. In Proceed-
ings of the 2013 USENIX Conference on Annual Technical Con-
ference, USENIX ATC’13, pages 309–320, Berkeley, CA, USA,
2013. USENIX Association.

[27] Eunsuk Kang and Daniel Jackson. Formal modeling and analysis
of a flash filesystem in alloy. In Abstract state machines, B and Z,
pages 294–308. Springer, 2008.

[28] Gabriele Keller, Toby Murray, Sidney Amani, Liam O’Connor,
Zilin Chen, Leonid Ryzhyk, Gerwin Klein, and Gernot Heiser.
File systems deserve verification too! ACM SIGOPS Operating
Systems Review, 48(1):58–64, 2014.

[29] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch,
and Simon Winwood. sel4: Formal verification of an os kernel. In
Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP ’09, pages 207–220, New York, NY,
USA, 2009. ACM.

[30] Linus Torvalds. Git. http://git-scm.com/, 2005.

[31] James Mickens, Edmund B. Nightingale, Jeremy Elson, Dar-
ren Gehring, Bin Fan, Asim Kadav, Vijay Chidambaram, Osama
Khan, and Krishna Nareddy. Blizzard: Fast, cloud-scale block
storage for cloud-oblivious applications. In 11th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI
14), pages 257–273, Seattle, WA, April 2014. USENIX Associa-
tion.

[32] NetApp. NetApp Software-Defined Storage. http:

//www.netapp.com/us/technology/software-

defined-storage/.

6

http://www.centurylinkcloud.com/blog/post/portability-in-action-a-demonstration-of-cloud-foundry-core
http://www.centurylinkcloud.com/blog/post/portability-in-action-a-demonstration-of-cloud-foundry-core
http://www.centurylinkcloud.com/blog/post/portability-in-action-a-demonstration-of-cloud-foundry-core
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=640492
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=640492
http://www.dropbox.com/developers/blo-g/78/datastore-api-growth
http://www.dropbox.com/developers/blo-g/78/datastore-api-growth
https://www.dropbox.com/en/help/9
http://stackoverflow.com/questions/1960799/using-git-and-dropbox-together-effectively
http://stackoverflow.com/questions/1960799/using-git-and-dropbox-together-effectively
http://stackoverflow.com/questions/1960799/using-git-and-dropbox-together-effectively
http://www.linuxinsider.com/story/79417.html
http://www.linuxinsider.com/story/79417.html
https://code.google.com/p/leveldb/issues/detail?id=189
https://code.google.com/p/leveldb/issues/detail?id=189
http://docs.openstack.org/admin-guide-cloud/content/instance-mgmt-ec2compat.html
http://docs.openstack.org/admin-guide-cloud/content/instance-mgmt-ec2compat.html
http://docs.openstack.org/admin-guide-cloud/content/instance-mgmt-ec2compat.html
http://www.phoronix.com/scan.php?page=news_item&px=MTYzNjA
http://www.phoronix.com/scan.php?page=news_item&px=MTYzNjA
http://www.phoronix.com/scan.php?page=news_item&px=MTYzNjA
http://arstechnica.com/gadgets/2014/09/review-in-its-second-generation-the-moto-x-becomes-a-true-flagship/3/
http://arstechnica.com/gadgets/2014/09/review-in-its-second-generation-the-moto-x-becomes-a-true-flagship/3/
http://arstechnica.com/gadgets/2014/09/review-in-its-second-generation-the-moto-x-becomes-a-true-flagship/3/
https://wiki.openstack.org/wiki/Swift/APIFeatureComparison
https://wiki.openstack.org/wiki/Swift/APIFeatureComparison
http://www.appcelerator.com/titanium/
http://www.appcelerator.com/titanium/
http://www.zdnet.com/article/watch-out-for-that-cloud-lock-in/
http://www.zdnet.com/article/watch-out-for-that-cloud-lock-in/
http://xamarin.com
http://lwn.net/Articles/326471/
http://lwn.net/Articles/326471/
ttp://www.emc.com/collateral/white-papers/h11749-transform-data-center-with-vipr-software-defined-storage-wp.pdf
ttp://www.emc.com/collateral/white-papers/h11749-transform-data-center-with-vipr-software-defined-storage-wp.pdf
ttp://www.emc.com/collateral/white-papers/h11749-transform-data-center-with-vipr-software-defined-storage-wp.pdf
ttp://www.emc.com/collateral/white-papers/h11749-transform-data-center-with-vipr-software-defined-storage-wp.pdf
https://code.google.com/p/leveldb/
https://code.google.com/p/leveldb/
http://www.infostor.com/storage-management/virtualization/emerging-trends-in-software-defined-storage-1.html
http://www.infostor.com/storage-management/virtualization/emerging-trends-in-software-defined-storage-1.html
http://www.infostor.com/storage-management/virtualization/emerging-trends-in-software-defined-storage-1.html
http://git-scm.com/
http://www.netapp.com/us/technology/software-defined-storage/
http://www.netapp.com/us/technology/software-defined-storage/
http://www.netapp.com/us/technology/software-defined-storage/

[33] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Is-
abelle/HOL: a proof assistant for higher-order logic, volume
2283. Springer, 2002.

[34] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. All File Systems Are Not
Created Equal: On the Complexity of Crafting Crash-Consistent
Applications. In Proceedings of the 11th Symposium on Operating
Systems Design and Implementation (OSDI ’14), Broomfield, CO,
October 2014.

[35] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Joo
young Hwang, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Towards Efficient, Portable Application-Level Consis-
tency. In Proceedings of the 9th Workshop on Hot Topics in De-
pendable Systems (HotDep ’13), Farmington, PA, November 2013.

[36] SQLite. SQLite transactional SQL database engine. http://

www.sqlite.org/.

[37] The ADvanced Systems Laboratory (ADSL). Verified Stor-
age Stacks. http://research.cs.wisc.edu/adsl/

Software/verifiedstoragestacks/.

[38] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis,
Antony Rowstron, Tom Talpey, Richard Black, and Timothy Zhu.
Ioflow: A software-defined storage architecture. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Princi-
ples, pages 182–196. ACM, 2013.

[39] VMWare. Software-Defined Storage (SDS) and Storage
Virtualization. http://www.vmware.com/software-

defined-datacenter/storage.

[40] VMWare. The VMware Perspective on Software-Defined Storage.
http://www.vmware.com/files/pdf/solutions/

VMware-Perspective-on-software-defined-

storage-white-paper.pdf.

[41] Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chlipala, and
Zachary Tatlock. Jitk: a trustworthy in-kernel interpreter infras-
tructure. In Proceedings of the 11th USENIX conference on Oper-
ating Systems Design and Implementation, pages 33–47. USENIX
Association, 2014.

[42] Markus Wenzel. Isar–a generic interpretative approach to readable
formal proof documents. In Theorem Proving in Higher Order
Logics, pages 167–183. Springer, 1999.

[43] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng Qin, Mark Lil-
libridge, Elizabeth S Yang, Bill W Zhao, and Shashank Singh.
Torturing Databases for Fun and Profit. In 11th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI
’14), Broomfield, CO, October 2014.

7

http://www.sqlite.org/
http://www.sqlite.org/
http://research.cs.wisc.edu/adsl/Software/verifiedstoragestacks/
http://research.cs.wisc.edu/adsl/Software/verifiedstoragestacks/
http://www.vmware.com/software-defined-datacenter/storage
http://www.vmware.com/software-defined-datacenter/storage
http://www.vmware.com/files/pdf/solutions/VMware-Perspective-on-software-defined-storage-white-paper.pdf
http://www.vmware.com/files/pdf/solutions/VMware-Perspective-on-software-defined-storage-white-paper.pdf
http://www.vmware.com/files/pdf/solutions/VMware-Perspective-on-software-defined-storage-white-paper.pdf

	Introduction
	Portability Bugs
	Avoiding Portability Bugs
	Verifying Storage Guarantees
	Specifying Storage-Stack Layers
	Computing Storage Guarantees
	Example: Key-Value Store

	Challenges
	Related Work
	Conclusion

