
The Storage Hierarchy is Not a Hierarchy:
Optimizing Caching on Modern Storage Devices with Orthus

Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu, Ramnatthan Alagappan†,
Rathijit Sen‡, Kwanghyun Park‡, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

University of Wisconsin–Madison †VMware Research ‡Microsoft

Abstract. We introduce non-hierarchical caching (NHC), a
novel approach to caching in modern storage hierarchies.
NHC improves performance as compared to classic caching
by redirecting excess load to devices lower in the hierarchy
when it is advantageous to do so. NHC dynamically adjusts
allocation and access decisions, thus maximizing performance
(e.g., high throughput, low 99%-ile latency). We implement
NHC in Orthus-CAS (a block-layer caching kernel module)
and Orthus-KV (a user-level caching layer for a key-value
store). We show the efficacy of NHC via a thorough empirical
study: Orthus-KV and Orthus-CAS offer significantly better
performance (by up to 2⇥) than classic caching on various
modern hierarchies, under a range of realistic workloads.

1 Introduction
The notion of a hierarchy (i.e., a memory hierarchy or storage
hierarchy) has long been central to computer system design.
Indeed, assumptions about the hierarchy and its fundamental
nature are found throughout widely used textbooks [28, 46,
85]: “Since fast memory is expensive, a memory hierarchy is
organized into several levels – each smaller, faster, and more
expensive per byte than the next lower level, which is farther
from the processor. [46]”

To cope with the nature of the hierarchy, systems usually
employ two strategies: caching [3, 73] and tiering [5, 43, 93].
Consider a system with two storage layers: a (fast, expensive,
small) performance layer and a (slow, cheap, large) capacity
layer. With caching, all data resides in the capacity layer, and
copies of hot data items are placed, via cache replacement
algorithms, in the performance layer. Tiering also places hot
items in the performance layer; however, unlike caching, it
migrates data (instead of copying) on longer time scales. With
a high-enough fraction of requests going to the fast layer, the
overall performance approaches the peak performance of the
fast layer. Consequently, classic caching and tiering strive to
ensure that most accesses hit the performance layer.

While this conventional wisdom of optimizing hit rates may
remain true for traditional hierarchies (e.g., CPU caches and
DRAM, or DRAM and hard disks), rapid changes in storage
devices have complicated this narrative within the modern
storage hierarchy. Specifically, the advent of many new non-
volatile memories [20,54,77] and low-latency SSDs [8,13,16]
has introduced devices with (sometimes) overlapping perfor-

mance characteristics. Thus, it is essential to rethink how such
devices must be managed in the storage hierarchy.

To understand this issue better, consider a two-level hierar-
chy with a traditional Flash-based SSD as the capacity layer,
and a newer, seemingly faster Optane SSD [8] as the perfor-
mance layer. As we will show (§3.2), in some cases, Optane
outperforms Flash, and thus the traditional caching/tiering ar-
rangement works well. However, in other situations (namely,
when the workload has high concurrency), the performance
of the devices is similar (i.e., the storage hierarchy is actually
not a hierarchy), and thus classic caching and tiering do not
utilize the full bandwidth available from the capacity layer. A
different approach is needed to maximize performance.

To address this problem, we introduce non-hierarchical
caching (NHC), a new approach to caching for modern stor-
age hierarchies. NHC delivers maximal performance from
modern devices despite complex device characteristics and
changing workloads. The key insight of NHC is that when
classic caching would send more requests to the performance
device than is useful, some of that excess load can be dy-
namically moved to the capacity device. This improves upon
classic caching in two ways. First, by monitoring performance
and adapting the requests sent to each device, NHC delivers
additional useful performance from the capacity device. Sec-
ond, NHC avoids data movement between the devices when
this movement does not improve performance. While the idea
of redirecting excess load to devices lower in the hierarchy
applies to both caching and tiering, we focus on caching.

Previous work has addressed some of the limitations of
caching [19,56], offloading excess writes from SSDs to under-
lying hard drives. However, as we show (§6.4), they have two
critical limits: they do not redirect accesses to items present in
the cache (hits), and they do not adapt to changing workloads
and concurrency levels (which is critical for modern devices).

We implement NHC in two systems: Orthus-CAS, a generic
block-layer caching kernel module [32], and Orthus-KV, a
user-level caching layer for an LSM-tree key-value store [64].
Under light load, Orthus implementations behave like classic
caching; in other situations, they offload excess load at the
caching layer to the capacity layer, improving performance.
Through rigorous evaluations, we show that Orthus implemen-
tations greatly improve performance (up to 2⇥) on various
real devices (such as Optane DCPM, Optane SSD, Flash SSD)

a c

Dhi
<latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit>

d
a b
c

Dlo
<latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit>

cache
access

A

replacement
traffic

Caching

a c

Dhi
<latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit>

d
a b
c

Dlo
<latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit>

cache
access

A

replacement
traffic

Non-Hierarchical Caching

a c

Dhi
<latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit><latexit sha1_base64="zyLoEign2CIhE74fkJf5mSI15Ow=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HazoZh0S2W/4s9AlkmQkzLkqHVLX52eZmnMFTJJrW0HfoJhRg0KJvmk2EktTygb0QFvO6pozG2Yza6dkFOn9EhfG1cKyUz9PZHR2NpxHLnOmOLQLnpT8T+vnWL/KsyESlLkis0X9VNJUJPp66QnDGcox45QZoS7lbAhNZShC6joQggWX14mjfNK4FeC+4ty9TqPowDHcAJnEMAlVOEOalAHBo/wDK/w5mnvxXv3PuatK14+cwR/4H3+AJpHjyI=</latexit>

b d

Dlo
<latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit><latexit sha1_base64="kVqAlQY2qqnAkmgusZkgXvXSi8c=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9BjUg8cI5gHJEmYnk2TM7Mwy0yuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJVJY9P1vb2V1bX1js7BV3N7Z3dsvHRw2rE4N43WmpTatiFouheJ1FCh5KzGcxpHkzWh0M/WbT9xYodUDjhMexnSgRF8wik5q3HYzqSfdUtmv+DOQZRLkpAw5at3SV6enWRpzhUxSa9uBn2CYUYOCST4pdlLLE8pGdMDbjioacxtms2sn5NQpPdLXxpVCMlN/T2Q0tnYcR64zpji0i95U/M9rp9i/CjOhkhS5YvNF/VQS1GT6OukJwxnKsSOUGeFuJWxIDWXoAiq6EILFl5dJ47wS+JXg/qJcvc7jKMAxnMAZBHAJVbiDGtSBwSM8wyu8edp78d69j3nripfPHMEfeJ8/qX2PLA==</latexit>

A

background
migration

split
access

Tiering

Figure 1: Caching, Tiering, and Non-Hierarchical Caching. The
figure shows the different approaches to managing a storage hierarchy.
Caching copies data items to the performance layer upon a miss. Tiering
splits access to each layer and migrates items in the background (on longer
time scales). Non-hierarchical caching (§4), our new approach, offloads
excess load at the performance layer to the capacity layer.

and other simulated ones for a range of workloads (YCSB [35]
and ZippyDB [31]). We show NHC is robust to dynamic work-
loads, quickly adapting to load and locality changes. Finally,
we compare NHC against prior caching strategies and demon-
strate its advantages. Overall, the non-hierarchical approach
extracts high performance from modern storage hierarchies.

2 Motivation
In this section, we discuss classic solutions to storage hier-
archy management. We then review current and near-future
devices and discuss how they alter the storage hierarchy.
2.1 Managing the Storage Hierarchy
A storage hierarchy is composed of multiple heterogeneous
storage devices and policies for transferring data between
those devices. For simplicity, we assume a two-device hierar-
chy, consisting of a performance device, Dhi, and a capacity
device, Dlo; commonly, Dhi is more expensive, smaller, and
faster, whereas Dlo is cheaper, larger, and slower.

Traditionally, two approaches have been used for managing
such a hierarchy: caching and tiering (Figure 1). With caching,
popular (hot) data is copied from Dlo into Dhi (e.g., on each
miss); to make room for these hot data items, the cache evicts
less popular (cold) data, as determined by algorithms such as
ARC, LRU, or LFU [4, 65, 67, 74, 89, 104]. The granularity of
data movement is usually small, e.g., 4-KB blocks.

Tiering [43, 57, 81], similar to caching, usually maintains
hot data in the performance device. However, unlike caching,
when data on Dlo is accessed, it is not necessarily promoted
to Dhi; data can be directly served from Dlo. Data is only
periodically migrated between devices on longer time scales
(over hours or days) and longer-term optimizations determine
data placement. Tiering typically does such migration at a
coarser granularity (an entire volume or a large extent [43]).
While caching can quickly react to workload changes, tiering
cannot do so given its periodic, coarser-granularity migration.

Both classic caching and tiering, to maximize performance,
strive to ensure that most accesses are served from the per-
formance device. Most caching and tiering policies are thus
designed to maximize hits to the fast device. In traditional hi-

Example Latency Read (GB/s) Write (GB/s) Cost ($/GB)
DRAM 80ns 15 15 ~7

NVDIMM 300ns 6.8 2.3 ~5
Low-latency SSD 10us 2.5 2.3 1
NVMe Flash SSD 80us ~3.0 ~2.0 0.3
SATA Flash SSD 180us 0.5 0.5 0.15

Table 1: Diversified Storage Devices. Data taken from SK Hynix
DRAM(DDR4, 16GB), Intel Optane DCPM [6,7], low-latency SSDs (Optane
SSD 905P [8], Micron X100 SSD [13]), NVMe Flash SSD (Samsung 970
Pro [14, 15]) and SATA Flash SSD (Intel 520 SSD [9]). Low-latency SSD
and NVMe Flash SSD assume PCIe 3.0.

1 2 4 8 16 32
-2
+2
+4
+6
+8

+10
+12
+14
+16

Reads

Threads

Pe
rfo

rm
an

ce
 R

at
io DRAM/NVM

NVM/Optane
Optane/Flash

1 2 4 8 16 32
-2
+2
+4
+6
+8

+10
+12
+14
+16

Writes

Threads

Figure 2: Performance Ratios Across Modern Devices. The ratio
of throughput, for varying concurrency, across device pairings. We disable
the cache prefetcher and use non-temporal stores for DRAM and NVM. NVM
is used as App-Direct mode. Note there is no value between -1 and +1.

erarchies where the performance of Dhi is significantly higher
than Dlo, such approaches deliver high performance. However,
with the storage landscape rapidly changing, modern devices
have overlapping performance characteristics and thus it is
essential to rethink how such devices must be managed.
2.2 Hardware Storage Trends
As shown in Table 1, storage systems are undergoing a rapid
transformation with a proliferation of high-performance tech-
nologies, including persistent memory (e.g., 3D XPoint mem-
ory [1, 44]), low-latency SSDs (e.g., Intel Optane SSD [8],
Samsung Z-SSD [16], and Micron X100 SSD [13]), NVMe
Flash SSDs ([14,15]), and SATA Flash SSDs ([9]). Although
a seeming ordering exists in terms of latency, bandwidth dif-
ferences are less clear, and a total ordering is hard to establish.

To better understand the performance overlap of these de-
vices, Figure 2 shows the throughput of a variety of real de-
vices for both 4KB read/load and write/store while varying
the level of concurrency. The figure plots the performance
ratio between pairs of devices: DRAM/NVM plots the band-
width of memory (SK Hynix 16GB DDR4) vs. a single Intel
Optane DCPM (128GB); NVM/Optane uses the DCPM vs.
the Intel 905P Optane SSD; finally, Optane/Flash uses the
same Optane SSD and the Samsung 970 Pro Flash SSD. For
any pair X/Y, a positive ratio (X

Y) is plotted if the performance
of X is greater than Y; otherwise, a negative ratio (�Y

X) is
plotted (in the gray region).

For reads with low concurrency, one can see significant
differences between device pairs. Thus, one might conclude
that a total ordering exists. However, for reads under high con-

currency, the ratios change dramatically. In the most extreme
case, the Optane SSD and Flash SSD have nearly identical
performance. For writes, the results are even more intriguing;
because of the low performance of NVM concurrent writes, in
one case (NVM/Optane), the ratio changes from much better
under low load to much worse under high load.

To summarize, the following are the key trends in the stor-
age hierarchy. Unlike the traditional hierarchy (e.g., DRAM
vs. HDD), the new storage hierarchy may not be a hierarchy;
the performance of two neighboring layers (e.g., NVM vs.
Optane SSD) can be similar. Second, the performance of new
devices vary depending upon many factors including different
workloads (reads vs. writes) and level of concurrency. Man-
aging these devices with traditional caching and tiering is
no longer effective. Given our focus on improving caching
approaches in this paper, we next demonstrate the limitations
of caching in modern hierarchies.

3 Characterizing Caching in Traditional and
Modern Storage Hierarchies

We now explore caching in different storage hierarchies. Our
goal is simple: to understand how caching performs in both
traditional and modern hierarchies. In doing so, we hope
to build towards a technique that addresses the limitation
of caching when running on modern, complex devices and
underneath a range of dynamic workloads.

For a deeper intuition, we first model caching performance.
We then conduct an empirical analysis on real devices, filling
in important details not captured by the model. We also model
an approach that we call splitting to highlight the drawbacks
of classic caching. In splitting, data is simply split across de-
vices, and no migration is performed at run time. Splitting
outperforms caching when accesses are optimally split be-
tween the performance and capacity devices. In contrast to
caching and tiering, splitting is impractical: it is not suitable
for workloads where popular items change over time; we use
it only as a baseline to build up to our solution.

3.1 Modeling Caching Performance
We assume there are two devices, Dhi and Dlo, where each
performs at a fixed rate, Rhi and Rlo ops/s; of course, real
devices are more complex, with internal concurrency and per-
formance that depends on the workload, but this simplification
is sufficient for our purposes.

We also assume that the workload has either little concur-
rency (i.e., one request at a time) or copious concurrency (i.e.,
many requests at a time). This allows us to bound the caching
performance between these extremes. We assume that the
workload is read only; this simplifies our analysis in that we
do not account for dirty writebacks upon a cache replacement.

3.1.1 Model
We develop a model of caching performance based on hit rate,
H 2 [0,1]. As stated above, we model two extremes: low and

high concurrency. For one request at a time, the average time
per request is:

Tcache,1 = H ·Thit +(1�H) ·Tmiss (1)
Thit is simply the inverse of the rate of the fast device,

i.e., Thit = 1
Rhi

; Tmiss is the cost of fetching the data from the
slow device and also installing it in the faster device, i.e.,
Tmiss = 1

Rhi
+ 1

Rlo
, or Rhi+Rlo

Rhi·Rlo
.

The resulting bandwidth is the inverse of Tcache,1:

Bcache,1 =
Rhi ·Rlo

H ·Rlo +(1�H) · (Rhi +Rlo)
(2)

We now model concurrent workloads. Assume N requests.
H ·N are hits, (1�H) ·N are misses. Note that only misses
are serviced by the slow device, whereas all requests must
be serviced by the fast one (data admissions). The time to
process N requests on the slow or fast device is:

Tslow(N) = N · (1�H) · 1
Rlo

(3)

Tf ast(N) = N · (1�H) · 1
Rhi

+N ·H · 1
Rhi

= N · 1
Rhi

(4)

Total time is the maximum of these two, i.e., whichever
device finishes last determines the workload time.

Tcache,many(N) = max(Tslow(N),Tf ast(N)) (5)
= max(N · 1�H

Rlo
,N · 1

Rhi
) (6)

Dividing by N (not shown) yields the average time per
request. Finally, the bandwidth can be computed, as it is the
inverse of the average time per request:

Bcache,many =
1

max(1�H
Rlo

, 1
Rhi

)
(7)

We model splitting performance based on the split rate,
S 2 [0,1], which determines the fraction S of requests serviced
at Dhi; the remaining requests (1 � S) are served at the tier
Dlo. Compared to caching, splitting eliminates the cost of
installing misses on the faster device. Its throughput can be
computed as follows (in a similar way as caching, note the
different formula for Dhi):

Bsplit,1 =
1

1�S
Rlo

+ S
Rhi

(8)

Bsplit,many =
1

max(1�S
Rlo

, S
Rhi

)
(9)

3.1.2 Model Exploration
We explore different parameter settings with our model. Fig-
ure 3 shows the results for four settings, starting with a large
difference in performance between Dhi and Dlo, and then
slowly increasing the performance of Dlo.

The first graph shows a traditional hierarchy where the per-
formance of Dhi is much (100⇥) higher than the performance
of Dlo. This graph shows that both caching and splitting can
deliver high performance on traditional hierarchies. The key
is to direct as many requests as possible to Dhi. Caching and
splitting perform well if nearly all requests hit in Dhi. Even

0.0 .25 .50 .75 1.0
0

50

100

150

200
Ratio 100:1

Ba
nd

w
id

th
 (O

ps
/S

ec
)

Cache (many)
Cache (1)
Split (many)
Split (1)

0.0 .25 .50 .75 1.0
0

50

100

150

200
Ratio 100:10

0.0 .25 .50 .75 1.0
0

50

100

150

200
Ratio 100:50

H (cache) or S (split)

Ba
nd

w
id

th
 (O

ps
/S

ec
)

0.0 .25 .50 .75 1.0
0

50

100

150

200
Ratio 100:100

H (cache) or S (split)

Figure 3: Modeled Performance. This figure shows model-predicted
throughput for caching and splitting across a range of different device per-
formance levels. We show performance for high (“many”) and low (“1”)
concurrency. The faster device performs at a fixed rate of 100 ops/sec.

with 80% hit/split rate, overall performance is quite low, as
the slow device dominates.

The next graph (upper right) examines a case where the
performance ratio between the devices is still high (10⇥).
Optimizing for a high hit/split rate still works well. Note the
slight difference between the low and high concurrency cases;
with higher concurrency, these approaches can achieve peak
performance even with slightly less than a perfect hit rate, as
outstanding requests hide the cost of misses.

The next two graphs represent modern hierarchies where
the performance of Dhi is closer to that of Dlo (Dhi deliv-
ers bandwidth either 2⇥ Dlo or equal to it). We make two
important observations from these graphs.

First, classic caching is limited by the performance of Dhi
and cannot realize the combined performance of both devices.
Even with a 100% hit ratio, caching can only deliver 100
ops/sec as it does not utilize the bandwidth of Dlo. Splitting
(with an optimal split rate) significantly outperforms caching,
exposing critical limitations of caching in modern hierarchies.

Second, in modern hierarchies, maximizing the number of
requests served by Dhi does not always yield the best perfor-
mance. Consider the case where Dhi is 2⇥ faster than Dlo.
With copious concurrency, when about two-thirds of the re-
quests are directed to Dhi, splitting realizes the aggregate
bandwidth of Dhi and Dlo. Increasing the split rate further
only degrades performance. Thus, in modern hierarchies, in-
stead of maximizing the hit or split rate, the key is to find the
right proportion of requests that must be sent to each device.

Th
ro

ug
hp

ut
 (k

op
s/

s)

Concurrency 1 4

DRAM/
Flash

8 16

NVM/
Optane

Optane/
Flash

Caching Splitting

0

100

0

200
0

500

0 1
 Hit/Split Rate

0 1 0 1 0 1

Figure 4: Performance of Caching and Splitting. This figure shows
the throughput of read-only workloads. Horizontal dotted lines represent the
combined bandwidth of both devices (the maximum possible throughput).

3.2 Evaluation with Optane DCPM and Optane SSD
Next, we demonstrate that the observations from our model
hold for real storage stacks. We use one traditional hierarchy
consisting of DRAM and a Flash SSD [14]. We also use two
modern stacks: first, NVM (Optane DCPM 128GB) and an
Optane 905P SSD; second, an Optane SSD and a Flash SSD.
We use these hierarchies to cover a wide range of performance
differences; meantime, DCPM and Optane SSD are the most
popular emerging devices nowadays. While there could be
many hierarchies (e.g., with different versions of these de-
vices), we believe our hierarchies are adequate to validate our
modeling and draw meaningful implications for our designs.

For these experiments, we have implemented a new bench-
marking tool, called the Hierarchical Flexible I/O Benchmark
Suite (HFIO). HFIO contains a configurable hierarchy con-
troller that implements caching and splitting. HFIO uses the
LRU-replacement policy for caching. HFIO generates syn-
thetic workloads with a variety of parameters (e.g., mix of
reads and writes, locality, and the number of concurrent ac-
cesses). HFIO precisely controls the caching layer size and
access locality to obtain a desired hit rate. We fix the block
size to 32 KB and consider only random accesses. We run
our experiments on an Intel Xeon Gold 5218 CPU at 2.3GHz
(16 cores), running Ubuntu 18.04. All experiments ran long
enough to fill the cache and deliver steady-state performance.

We begin by replicating the results from our model by
running read-only workloads and measuring the throughput.
Figure 4 shows the results on three hierarchies and workloads
with different levels of concurrency. First, in the traditional
hierarchy (DRAM+Flash SSD, the first row of Figure 4), as
expected, both caching and splitting can achieve high perfor-
mance. Caching and splitting perform similarly, exactly as
our model predicted (Figure 3, 100:1 and 100:10 cases).

The second two rows of Figure 4 show that caching in new
storage hierarchies (e.g., NVM+Optane, Optane+Flash) be-
haves much differently than in the traditional hierarchy. With
low concurrency (1 or 4), the caching device (i.e., DCPM or
Optane SSD) is not fully utilized and thus optimizing the hit/s-

plit rate still improves performance. However, for workloads
with more concurrency, maximizing the hit/split rates does not
lead to peak performance in either of the NVM+Optane or Op-
tane+Flash hierarchies. In these situations, capacity devices
such as Optane SSD provide substantial performance com-
pared to their caching layers (e.g., DCPM). Splitting (with
an optimal split rate) can thus deliver significantly greater
performance than caching.

Our experiments with real devices reveal several complexi-
ties that the models do not: the optimal split rate depends upon
several factors. From Figure 4, we can see that the optimal
split rate varies significantly from one device to another and
with the level of parallelism of the workload. Write ratios also
influence the optimal split rate. As shown in Figure 5, for Op-
tane+Flash, the optimal split rate for a read-heavy workload
is 90%, while it is about 60% when the workload is write-
heavy. This change occurs because the difference between
the write performances of Optane and Flash is smaller than
the difference between their read performances. We observe
similar results for the NVM+Optane hierarchy.

Summary and Implications: Our performance character-
ization (modeling and evaluation) of caching provides im-
portant lessons for our design. Classic caching is no longer
effective in modern hierarchies: it does not exploit the consid-
erable performance that can be delivered by the capacity layer.
With high hit rates and when the cache layer is under heavy
load, some of the requests can be offloaded to the capacity
device. Such high hit rates and heavy load are quite common
in production caching systems. For instance, a recent study at
Twitter showed that eight out of the ten Twemcache clusters
have a miss ratio lower than 5% [98]. Studies have also shown
that cache layers often experience heavy load (i.e., they are
bandwidth saturated) [17, 56].

In the modern hierarchy, the capacity layer can offer sub-
stantial performance and should thus be exploited in such
situations. An alternative solution is to increase the number
of cache devices in the hierarchy; however, this approach can
be prohibitively expensive as performance devices are more
costly. In contrast, offloading requests to the capacity layer
offers a more economic way to realize significant improve-
ments. Such an offloading approach can deliver the aggregate
performance of all devices by optimally splitting the requests
to each device. For the offloading approach to work well, it
is essential to dynamically adjust the split rate because the
optimal rate varies widely in modern hierarchies depending
upon factors such as write ratios and level of concurrency.

We note that classic tiering (which also aims to direct most
requests to the performance layer) suffers from similar short-
comings as caching in modern hierarchies. In this work, we
focus on improving caching for two main reasons. First, get-
ting tiering to optimally split accesses is fundamentally hard.
Migration or replication to match the current optimal split in
tiering may hurt performance. In contrast, caching can readily
bypass cache hits to capacity devices; copies of hot data are

Th
ro

ug
hp

ut

(k
op

s/
s)

Optane/Flash (PAR 4)

0.1
0.5
0.9

Read Ratio

0

50

100

Split Ratio
0 1

(a) Optane SSD + Flash

NVM/Optane (PAR 8)

0

100

200

Split Ratio
0 1

(b) NVM + Optane SSD

Figure 5: Mixed Reads and Writes Workloads. The figure shows
the performance of splitting with read-write workloads; PAR: workload
parallelism/concurrency.

always available on both devices. Second, we believe there
are many scenarios where caching may be the only suitable
solution and tiering may not be appropriate. For instance, ap-
plications can only use DRAM as a cache when persistence is
required and cannot tier in the DRAM+NVM hierarchy. We
believe many systems use caching for such reasons and an
approach that improves upon classic caching can be beneficial
for many such systems.

4 Non-Hierarchical Caching
We present non-hierarchical caching (NHC), a caching frame-
work that utilizes the performance of devices that would have
been treated as only a capacity layer with classic caching.
NHC has the following goals:
(i) Perform as well or better than classic caching. Classic
caching optimizes the performance of a storage hierarchy by
optimizing the performance from the higher-level device, Dhi;
this performance is optimized by finding the working set that
maximizes the hit rate. NHC should degenerate in the worst-
case to classic caching and should be able to leverage any
classic caching policy (e.g., eviction and write-allocation).
(ii) Require no special knowledge or configuration. NHC
should not make more assumptions than classic caching. NHC
should not require prior knowledge of the workload or detailed
performance characteristics of the devices. NHC should be
able to manage any storage hierarchy.
(iii) Be robust to dynamic workloads: Workloads change
over time, in their amount of load and working set. NHC
should adjust to dynamic changes.

The main idea of NHC (Figure 1) is to offload excess
load to capacity devices when doing so improves the overall
caching performance. NHC can be described in three steps.
First, when warming up the system (or after a significant
workload change), NHC leverages classic caching to identify
the current working set and load that data into the Dhi; this
ensures that NHC performs at least as well as classic caching.
Second, after the hit rate has stabilized, NHC improves upon
classic caching by sending excess load to the capacity device,
Dlo. This excess load has two components: read hits that are
not delivering additional performance on Dhi because Dhi is
already at its maximum performance, and read misses that

cause unnecessary data movement between the two devices.
Classic caching moves data from Dlo to Dhi when a miss
occurs to improve the hit rate. However, improving hit rate
is not beneficial when Dhi is already delivering its maximum
performance. Therefore, NHC decreases the amount of data
admissions into Dhi . Using a feedback-based approach, NHC
determines the excess load; it requires no knowledge of the
device or the workload. Finally, if a workload change is ob-
served, NHC returns to classic caching; if the workload never
stabilizes, the algorithm degenerates to classic caching. NHC
can leverage the same write-allocation policies as a classic
cache (e.g., write-around or write-back).

4.1 Formal Definitions
To describe NHC, we introduce a few terms. We assume
that the storage hierarchy is still composed of two devices,
Dhi and Dlo. Caching performance is determined by how the
workload is distributed across those two devices. We denote
the total workload over a time period dt as a constant W , a
finite set of accesses to data items. We use w to refer to the
subset of W served by Dhi, and use its complement set W �w
for that served by Dlo. We model performance in the time
period dt as P(W,w) = phi(w)+ plo(W � w). We make the
following assumptions about the devices:

Assumption 1: Performance of a device has an upper
bound. The performance of a device cannot increase after it
is fully utilized. Lhi and Llo represent the maximum possible
performance that can be delivered by each device for the
current workload, W . We note w0 as the smallest subset of w
such that phi(w0) = Lhi.

Assumption 2: Increasing the workload on a device
does not decrease performance. This implies phi(x) and
plo(x) are monotonically increasing functions. Note that HDD
performance can decrease with more random requests due
to more seeks, but the assumption generally holds for high-
performing devices such as DRAM, NVM, and SSDs.

Assumption 3: Before reaching upper limits, phi(x) has
a larger gradient than plo(x). Based on our observations
from real devices, the potential performance gain of using Dhi
is greater than that of using Dlo.

We define classic caching as an approach that optimizes
P(W,w) by maximizing only phi(w). Classic caching attempts
to maximize P(W,w) by finding some working set wmax that
maximizes the hit rate of Dhi.

The key insight of NHC is that, when w0 < wmax, an oppor-
tunity exists to move some portion of the workload wmax �w0
away from Dhi to Dlo. Since phi(w0) = phi(wmax) = Lhi, re-
moving wmax � w0 from Dhi does not decrease the perfor-
mance of Dhi below Lhi and now Dlo can deliver some amount
of performance for wmax � w0. Thus, NHC can always per-
form as well or better than classic caching.

4.2 Architecture
As shown in Figure 6, classic caching can be upgraded to
NHC by adding decision points to its cache controller and

Non-Hierarchical
Cache Scheduler

Optimizer
X = argmax f(X) Load

Admission
Switch

Hit?

Capacity
Layer (Dlo)

Performant
Layer (Dhi)

User/Application

Monitor f(X)

Tune

Insert(item) Get/Lookup(item)

NO

YES

Classic Cache Controller

data_admit

TRUE

clean �
(p > load admit)

<latexit sha1_base64="y92lmO0Py2E93QUQhz0DZ5YNjm8=">AAACHnicbVBNSxxBEK1RE83mw4055tK4CIbAMiOInsKilxwVXBV2lqWmp2Zt7OkZumvUZdhf4sW/4sWDIQRy0n9j764Hvx40/Xiviqp6SamV4zC8D+bmF969X1z60Pj46fOX5ebXlUNXVFZSVxa6sMcJOtLKUJcVazouLWGeaDpKTncn/tEZWacKc8Cjkvo5Do3KlET20qC5GTNdcJLV05+5lprQjMciPqd0SCKOG+ul+CWELjCNB5jmin80Bs1W2A6nEK9J9EhandX45xUA7A2a/+O0kFVOhqVG53pRWHK/RsvKDxw34spRifIUh9Tz1GBOrl9PzxuLNa+kIiusf4bFVH3aUWPu3ChPfGWOfOJeehPxLa9Xcbbdr5UpKyYjZ4OySgsuxCQrkSpLkvXIE5RW+V2FPEGLkn2ikxCilye/Jocb7ShsR/tRq7MDMyzBd1iFdYhgCzrwG/agCxIu4Rpu4U9wFdwEf4N/s9K54LHnGzxDcPcAYjijZQ==</latexit><latexit sha1_base64="rWk5hLQFaB5Vb/VQtPvLSZMfAMo=">AAACHnicbVDLSitBEO3xbfRq1KWbxiAoF8LMhYuuJOjGpYJRIRNCTU9NbOzpGbpr1DDkL9y58VfcuFBEcKV/Yydx4etA04dzqqiqE+VKWvL9N29sfGJyanpmtjI3/2dhsbq0fGyzwghsikxl5jQCi0pqbJIkhae5QUgjhSfR+d7AP7lAY2Wmj6iXYzuFrpaJFEBO6lT/h4RXFCXl8CcqhULQ/T4PLzHuIg/DykbOdzhXGcRhB+JU0malU635dX8I/pMEH6TWWAv/Xr81eged6ksYZ6JIUZNQYG0r8HNql2BIuoH9SlhYzEGcQxdbjmpI0bbL4Xl9vu6UmCeZcU8TH6qfO0pIre2lkatMgc7sd28g/ua1Ckq226XUeUGoxWhQUihOGR9kxWNpUJDqOQLCSLcrF2dgQJBLdBBC8P3kn+T4Xz3w68FhUGvsshFm2CpbYxssYFuswfbZAWsywW7YHXtgj96td+89ec+j0jHvo2eFfYH3+g5roqTr</latexit><latexit sha1_base64="rWk5hLQFaB5Vb/VQtPvLSZMfAMo=">AAACHnicbVDLSitBEO3xbfRq1KWbxiAoF8LMhYuuJOjGpYJRIRNCTU9NbOzpGbpr1DDkL9y58VfcuFBEcKV/Yydx4etA04dzqqiqE+VKWvL9N29sfGJyanpmtjI3/2dhsbq0fGyzwghsikxl5jQCi0pqbJIkhae5QUgjhSfR+d7AP7lAY2Wmj6iXYzuFrpaJFEBO6lT/h4RXFCXl8CcqhULQ/T4PLzHuIg/DykbOdzhXGcRhB+JU0malU635dX8I/pMEH6TWWAv/Xr81eged6ksYZ6JIUZNQYG0r8HNql2BIuoH9SlhYzEGcQxdbjmpI0bbL4Xl9vu6UmCeZcU8TH6qfO0pIre2lkatMgc7sd28g/ua1Ckq226XUeUGoxWhQUihOGR9kxWNpUJDqOQLCSLcrF2dgQJBLdBBC8P3kn+T4Xz3w68FhUGvsshFm2CpbYxssYFuswfbZAWsywW7YHXtgj96td+89ec+j0jHvo2eFfYH3+g5roqTr</latexit><latexit sha1_base64="0Oj6zeKq0otzbbMGO9kjtiu9Lh0=">AAACHnicbVBNS8NAEN34bf2qevSyWAS9lEQQPUnRi0cFq0JTymQzqYubTdidqCX0l3jxr3jxoIjgSf+N29qDXw+Wfbw3w8y8KFfSku9/eGPjE5NT0zOzlbn5hcWl6vLKmc0KI7ApMpWZiwgsKqmxSZIUXuQGIY0UnkdXhwP//BqNlZk+pV6O7RS6WiZSADmpU90JCW8pSsrhT1QKhaD7fR7eYNxFHoaVzZzvc64yiMMOxKmkrUqnWvPr/hD8LwlGpMZGOO5U38I4E0WKmoQCa1uBn1O7BEPSDexXwsJiDuIKuthyVEOKtl0Oz+vzDafEPMmMe5r4UP3eUUJqbS+NXGUKdGl/ewPxP69VULLXLqXOC0ItvgYlheKU8UFWPJYGBameIyCMdLtycQkGBLlEByEEv0/+S86264FfD06CWuNgFMcMW2PrbJMFbJc12BE7Zk0m2B17YE/s2bv3Hr0X7/WrdMwb9ayyH/DePwFPuaHc</latexit>

dirty �
p � load admit

<latexit sha1_base64="TPbXGj6XiLHOq3vqXY4hu/gLLF8=">AAACHXicbVC7TsNAEFzzDOYVoKQ5ESFRoMhGSFBG0FCCREikOLLO5zWcOD/wrRGRlR+h4VdoKECIggbR8SlcHgUEprnRzI5ud4JMSU2O82lNTc/Mzs1XFuzFpeWV1era+oVOi1xgU6QqzdsB16hkgk2SpLCd5cjjQGEruD4e+K1bzLVMk3PqZdiN+WUiIyk4Gcmv7nuEdxRE5fAlKkOZU6/fZ55JMs+zM8PwhjGV8tDzeRhLsv1qzak7Q7C/xB2TWoN5u18AcOpX370wFUWMCQnFte64TkbdkuckhcK+7RUaMy6u+SV2DE14jLpbDq/rs22jhCwy60RpQmyo/kyUPNa6FwdmMuZ0pSe9gfif1ykoOuyWMskKwkSMPooKxShlg6qYqQIFqZ4hXOTS7MrEFc+5IFPooAR38uS/5GKv7jp198ytNY5ghApswhbsgAsH0IATOIUmCLiHR3iGF+vBerJerbfR6JQ1zmzAL1gf30CGpBM=</latexit><latexit sha1_base64="PPwACCNid0bo6xPn71z3x5nq5F4=">AAACHXicbVC7SgNBFJ31lbi+opY2g0GwkLArgpZBG8sI5gHZJczO3k2GzD7cuSuGJR+ijb9iY6GIhY3Y+yFOHoUmnmYO59zD3Hu8RAqFlvVlLCwuLa8Uiqvm2vrG5lZpe6eh4izlUOexjNOWxxRIEUEdBUpoJSmw0JPQ9PoXI795C6kScXSNgwTckHUjEQjOUEud0omDcIdekI9fxNwXKQ6GQ+roJHUcM9EMbiiVMfOdDvNDgWanVLYq1hh0nthTUq5S5+jbvy/UOqUPx495FkKEXDKl2raVoJuzFAWXMDSdTEHCeJ91oa1pxEJQbj6+bkgPtOLTQK8TxBHSsfo7kbNQqUHo6cmQYU/NeiPxP6+dYXDm5iJKMoSITz4KMkkxpqOqqK4COMqBJoynQu9KeY+ljKMudFSCPXvyPGkcV2yrYl/Z5eo5maBI9sg+OSQ2OSVVcklqpE44eSBP5IW8Go/Gs/FmvE9GF4xpZpf8gfH5A6GqpRs=</latexit><latexit sha1_base64="PPwACCNid0bo6xPn71z3x5nq5F4=">AAACHXicbVC7SgNBFJ31lbi+opY2g0GwkLArgpZBG8sI5gHZJczO3k2GzD7cuSuGJR+ijb9iY6GIhY3Y+yFOHoUmnmYO59zD3Hu8RAqFlvVlLCwuLa8Uiqvm2vrG5lZpe6eh4izlUOexjNOWxxRIEUEdBUpoJSmw0JPQ9PoXI795C6kScXSNgwTckHUjEQjOUEud0omDcIdekI9fxNwXKQ6GQ+roJHUcM9EMbiiVMfOdDvNDgWanVLYq1hh0nthTUq5S5+jbvy/UOqUPx495FkKEXDKl2raVoJuzFAWXMDSdTEHCeJ91oa1pxEJQbj6+bkgPtOLTQK8TxBHSsfo7kbNQqUHo6cmQYU/NeiPxP6+dYXDm5iJKMoSITz4KMkkxpqOqqK4COMqBJoynQu9KeY+ljKMudFSCPXvyPGkcV2yrYl/Z5eo5maBI9sg+OSQ2OSVVcklqpE44eSBP5IW8Go/Gs/FmvE9GF4xpZpf8gfH5A6GqpRs=</latexit><latexit sha1_base64="rzsCFgyraUrGySQ4B6aESV5gca8=">AAACHXicbVC7TsNAEDzzDOFloKQ5ESFRRTZCgjKChjJI5CHFVnQ+r5NTzg98a0Rk+Udo+BUaChCioEH8DRcnBSRMc6OZHd3ueIkUCi3r21haXlldW69sVDe3tnd2zb39toqzlEOLxzJOux5TIEUELRQooZukwEJPQscbXU38zj2kSsTRLY4TcEM2iEQgOEMt9c0zB+EBvSAvX8TcFymOi4I6Okkdp5poBneUypj5Tp/5ocBq36xZdasEXST2jNTIDM2++en4Mc9CiJBLplTPthJ0c5ai4BKKqpMpSBgfsQH0NI1YCMrNy+sKeqwVnwZ6nSCOkJbq70TOQqXGoacnQ4ZDNe9NxP+8XobBhZuLKMkQIj79KMgkxZhOqqK6CuAox5owngq9K+VDljKOutBJCfb8yYukfVq3rbp9Y9cal7M6KuSQHJETYpNz0iDXpElahJNH8kxeyZvxZLwY78bHdHTJmGUOyB8YXz/ZVaJL</latexit>

Figure 6: Non-Hierarchical Caching Architecture. This figure
shows the architecture of NHC. NHC adds decision points and a scheduler to
classic caching. As before, NHC is transparent to users. Any classic caching
implementation can be upgraded to be a NHC one. Note that decision points
only tune cache read hits/misses.

a non-hierarchical cache scheduler. The classic cache con-
troller serves reads and writes from a user/application to the
storage devices (i.e., Dhi and Dlo) and controls the contents of
Dhi based on its replacement policy (e.g., LRU). A new cache
scheduler monitors performance and controls whether classic
caching is performed and where cache read hits are served.
The scheduler optimizes a target performance metric that can
be supplied by the end-user (e.g., ops/sec) or use device-level
measurements (e.g., request latency).

The NHC scheduler performs this control with a boolean
data_admit (da) and a variable load_admit (la). The da
flag controls behavior when a read miss occurs on Dhi: when
da is set, missed data items are allocated in Dhi, according
to the cache replacement policy; when da is not set, the miss
is handled by Dlo and not allocated in Dhi. Classic caching
corresponds to the case where the da flag is true.

The la variable controls how read hits are handled and
designates the percentage of read hits that should be sent to
Dhi; when la is 0, all read hits are sent to Dlo. Specifically,
for each read hit, a random number R 2 [0,1.0] is generated;
if R <= la, the request is sent to Dhi; else, it is sent to Dlo.
In classic caching, la is always 1.

The NHC framework works with any classic caching write-
allocation policy (specified by users), which handles write
hits/misses. NHC admits write misses into Dhi according to
the policy; da, la do not control write hits/misses. With write-
back, cache writes introduce dirty data in Dhi and data on
Dlo can be out-of-date; in this case, NHC does not send dirty
reads to Dlo.

4.3 Cache Scheduler Algorithm
The NHC scheduler adjusts the behavior of the controller to
optimize a target performance metric. As shown in Algorithm
1, the scheduler has two states: increasing the amount of data
cached on Dhi to maximize hit rate, or keeping the data cached
constant, while adjusting the load sent to each device.

Algorithm 1: Non-hierarchical caching scheduler
cache: classic cache controller
step: the adjustment step size for load_admit
f(x): function that measures target performance metric when

load_admit = x, the value is measured by setting
load_admit = x for a time interval

1 while true do
State 1: Improve hit rate

2 data_admit = true, load_admit = 1.0
3 while cache.hit_rate is not stable do
4 sleep_a_while()

5 data_admit = false, start_hit_rate = cache.hit_rate
State 2: Adjust load_admit

6 while true do
7 ratio = load_admit

Measure f(ratio-step) and f(ratio+step)
8 max_f = Max(f(ratio-step), f(ratio), f(ratio+step))

Modify load_admit based on the slope
9 if f(ratio-step) == max_f then

10 load_admit = ratio - step

11 else if f(ratio+step) == max_f then
12 load_admit = ratio + step

13 else if f(ratio) == max_f then
14 load_admit = ratio
15 if load_admit == 1.0 then
16 goto line 2 # Quit tuning if w < w0

Check whether workload locality changes
17 if cache.hit_rate < (1-a)start_hit_rate then
18 goto line 2

State 1: Improve hit rate. The NHC scheduler begins by
letting the cache controller perform classic caching with its
default replacement policy (da is true and la is 1); during this
process, the cache is warmed up and the hit rate improves as
the working set is cached in Dhi. The NHC scheduler monitors
the hit rate of Dhi and ends this phase when the hit rate is
relatively stable; at this point, the performance delivered by
Dhi for the workload wmax is near its peak.

State 2: Adjust load between devices. After Dhi contains
the working set leading to a high hit rate and performance,
the NHC scheduler explores if sending some requests to Dlo
increases the performance of Dlo, while not decreasing the per-
formance of Dhi, i.e., the algorithm moves from wmax toward
w0. In this state, da is set to false and feedback is used to tune
la to maximize the target performance metric. Specifically,
the scheduler (Lines 6–18) modifies la; in each iteration, per-
formance is measured with la +/- step over a time interval
(e.g., 5ms see §5). The value of la is adjusted in the direction
indicated by the three data points. When the current value of
la leads to the best performance, the scheduler sticks with the
current value. The value of la is kept in the acceptable domain
of [0, 1.0] with a negative penalty function. If the scheduler
finds the optimal la is 1, it quits tuning and moves back to

State 1; intuitively, this means NHC has moved the current
workload w below w0 and hence requires classic caching to
improve the hit rate to further improve performance.

Since NHC relies on classic caching to achieve an accept-
able hit rate, it restarts the optimization process when work-
load locality changes. The NHC scheduler monitors the cache
hit rate at runtime; if the current hit rate drops, the scheduler
re-enters State 1 to reconfigure the cache with the current
working set. If the workload never stabilizes, NHC behaves
like classic caching.

Target Performance Metrics: NHC can improve different
aspects of performance. NHC can be configured to optimize
metrics such as throughput, latency, tail latency, or any com-
bination. The target metrics can also capture performance at
various levels of the system (e.g., hardware, OS, or applica-
tion). f is a function that measures the target metric.

Write Operations: NHC handle writes with the write-
allocation policy (specified by users) in the classic cache
controller. NHC does not adjust the write-allocation policy
because it may be chosen for factors other than performance:
endurance [37, 86], persistence, or consistency [59].

Adapting to Dynamic Workloads: NHC periodically
measures the target metric (e.g., throughput) using f and opti-
mizes it by adjusting load-admission ratios (in a way similar
to gradient-descent). NHC only needs Df to determine the
optimal split of accesses. Since tuning involves only one pa-
rameter (load-admission ratio), it is cheap and converges fast.
NHC can thus handle frequently-changing workloads with
continual tuning.

Summary: Non-hierarchical caching optimizes classic
caching to effectively use the performance of capacity de-
vices. NHC improves on classic caching in two ways. First,
NHC does not admit read misses into Dhi when the perfor-
mance of Dhi is fully utilized. Second, when the performance
of Dhi is at its peak, NHC delivers useful performance from
the Dlo device by sending some of the requests that would
have hit in Dhi to Dlo instead. By determining at run-time the
appropriate load, NHC obtains useful performance from Dlo
instead of using Dlo only to serve misses into Dhi.

5 Implementation
We implement non-hierarchical caching in two places: Orthus-
CAS, a generic block-layer caching kernel module, and
Orthus-KV, a user-level caching layer for a key-value store.

Open CAS [32] is caching software built by Intel that ac-
celerates accesses to a slow backend block device by using a
faster device as a cache. It supports different write-allocation
policies such as write-around, write-through, and write-back,
and uses an approximate LRU policy for eviction. Open CAS
is a kernel module that we modify to leverage NHC. Orthus-
CAS works with all policies supported in Open CAS.

We also implement NHC within a persistent block cache
for Wisckey [64], an LSM-tree key-value store. LSM trees are
a good match for Optane SSD, and have garnered significant

industry interest [2,12,38]. Wisckey is derived from LevelDB;
the primary difference is that Wisckey separates keys from
values to reduce amplification. While keys remain in the
LSM-tree, values are stored in a log and each key points to
its corresponding value in the log. Separating keys and values
also improves caching because it avoids invalidating values
when compacting levels; this is similar to the approach in
memcached [11] for spilling data to SSD. We integrate NHC
with Wisckey’s persistent block cache layer. The cache keeps
hot blocks (both LSM-tree key and value blocks, 4KB in size)
on the cache device using sharded-LRU. Eviction occurs in
units of 64 blocks. We call this implementation Orthus-KV.
Detecting Hit-rate Stability: NHC considers the hit-rate to
be stable (Algorithm 1, Lines 3-4) when it changes within
0.1% in the last 100-milliseconds. This simple heuristic works
well as NHC does not require perfect hit-rate-stability detec-
tion. With intensive workloads, a higher hit-rate will only let
NHC bypass more hits; with light workloads, NHC switches
to classic caching quickly.
Target Performance Metrics: Our implementations support
three target metrics: throughput, average latency, and tail (P99)
latency, with throughput being the default. When optimizing
throughput, we use the Linux block-layer statistics [10] to
track device throughputs. When optimizing for latency, we
track the end-to-end request latency of the caching system.
Tuning Parameters: NHC implementations must measure
the target metrics and tune parameters periodically. The speed
at which NHC adapts to workload changes depends on both
the interval between target performance measurements and
the step size. With a smaller interval, tuning converges faster.
Though frequent tuning means more CPU overheads, our CPU
overheads are negligible. We found the Linux block layer
counters [10] are not accurate when the interval is smaller
than 5 ms, so we use the smallest yet accurate interval of 5
ms. A large step size leads to faster convergence but may get
sub-optimal results. NHC adjusts the load ratio by 2% in each
step; we have found this gives a reasonable converging time
with end results similar to smaller step sizes. We leave an
adaptive step size for future work.
Implementation Overhead: We find that implementing
NHC into existing caching layers is fairly straightforward
and requires nominal developer effort. We added only 460
(not including cache mode registration code) and 228 LOC
into Open CAS and Wisckey, respectively.

6 Evaluation
Our evaluation aims to answer the following questions:
• How does NHC in Orthus-CAS perform across hierarchies,

write-allocation policies, and target metrics? (§6.1)
• How does NHC as implemented in Orthus-KV perform on

static workloads? (§6.2)
• How does Orthus-KV handle dynamic workloads? How

does it adapt to changes in load and data locality? (§6.3)
• How does NHC compare to previous work? (§6.4)

Setup. We use the following real devices: a SK Hynix DDR4
module (denoted as DRAM), an Intel Optane 128GB DCPM
(NVM), an Intel Optane SSD 905P (Optane), and a Samsung
970 Flash SSD (Flash). We also use FlashSim [58] to simulate
flash devices with different performance characteristics.

6.1 Orthus-CAS
We begin by evaluating NHC as implemented in Orthus-CAS
running on microbenchmarks where the workloads do not
change over time. The accesses are uniformly random and
64KB (the suggested page size for Open CAS). We use 1GB
of the cache device and generate workloads with different hit
ratios. We report the stable performance of classic caching; for
NHC, we report when its tuning stabilizes. Unless otherwise
noted, we use throughput as the target function.

6.1.1 Storage Hierarchies
We show the normalized throughput of Open CAS and
Orthus-CAS for read-only workloads with different hierar-
chies, amounts of load, and hit ratios in Figure 7. We define
Load-1.0 as the minimum read load to achieve the maximum
read bandwidth of the cache device; we generate Load-0.5,
1.5, and 2.0 by scaling load-1.0. We investigate hierarchies
that include DRAM, NVM, Optane SSD, and Flash. We also
mimic hierarchies with two performance differences (50:10
and 50:25) using FlashSim; we configure FlashSim to simu-
late devices with maximum speeds of 50MB/s, 25MB/s, and
10MB/s. We make the following observations from the figure:

First, when load is light (e.g., Load-0.5), cache devices
always outperform capacity devices. In this case, NHC does
not bypass any load and behaves the same as classic caching.

Second, when the workload can fully utilize the cache
device, Orthus-CAS improves performance. Intuitively, a
higher hit ratio and load gives NHC more opportunities by-
pass requests and improve performance. Figure 7 confirms
the intuition: with 95% hit ratio and Load-2.0, NHC ob-
tains improvements of 21%, 32%, 54% for DRAM+NVM,
NVM+Optane, and Optane+Flash, respectively. Such im-
provements are marginally reduced with an 80% hit ratio.

Third, among these hierarchies, Optane+Flash improves
the most with Orthus-CAS since the performance differ-
ence between Optane and Flash is the smallest, followed by
NVM+Optane and DRAM+NVM. Our results with FlashSim
show how practitioners can predict the improvement of using
NHC on their target hierarchies.

Finally, our measurements indicate that Orthus-CAS adapts
to complex device characteristics. With an 80% hit ratio, clas-
sic caching does not achieve 1.0 normalized throughput on
any real hierarchy because cache misses introduce additional
writes to the cache device. NHC handles such complexities.

Latency Improvement. As shown in Figure 7, Orthus-
CAS also improves average latency on all hierarchies. For
instance, with Load-2.0, NHC reduces average latency by
19%, 25%, 39%, for DRAM+NVM, NVM+Optane, and Op-
tane+Flash hierarchies, respectively.

(a) 95% Hit Rate (b) 80% Hit Rate

Figure 7: Orthus-CAS on Various Hierarchies. Read-only workloads; (a) and (b) show different cache hit rates. All throughputs are normalized to the
maximum read bandwidth of the caching device. We show latency (µs) on top of each bar (not comparable across hierarchies).

MFWA : WA
MFWB: WB
MFWT: WT

Sp
ee

du
p

1.0
1.2
1.4
1.6

Write Ratio
10% 30% 50%

(a) Optane + Flash, 20% Dirty Reads

Sp
ee

du
p

1.0
1.2
1.4
1.6

Write Ratio
10% 30% 50%

(b) Optane + Flash, 80% Dirty Reads

Sp
ee

du
p

1.0
1.1
1.2
1.3

Write Ratio
10% 30% 50%

(c) NVM + Optane, 20% Dirty Reads

Sp
ee

du
p

1.0
1.1
1.2
1.3

Write Ratio
10% 30% 50%

(d) NVM + Optane, 80% Dirty Reads

Figure 8: Orthus-CAS with Different Write-allocation Policies.
The figure shows Orthus-CAS overall throughput speedup (against Open
CAS) with different write-allocation policies: WA, WB, and WT are write-
around, write-back, and write-through. Workloads have a concurrency level
of 16 and 95% hit rates.

6.1.2 Write-Allocation Policies

Open CAS can use a variety of write-allocation policies (write-
around, write-back, and write-through) and Figure 8 shows
that NHC improves performance relative to classic caching
with each policy. The experiments vary the storage hierarchy,
the write ratio, and the dirty-read ratio. We control the dirty-
read ratio by limiting the percentage of the working set that
writes can touch (e.g., if writes go to 80% of the working set,
then 80% of the reads will be dirty).

NHC improves reads irrespective of write ratios. When
reads or writes overload the cache device, NHC bypasses
read hits, improving performance (e.g., significantly so on
NVM+OptaneSSD where NVM writes interfere with reads
dramatically). As shown in Figure 8, the overall improve-
ments are dependent upon a combination of the workload
write and dirty-read ratios and the write-allocation policy.
NHC offers more benefits when there are fewer writes. With
write-back, NHC cannot offload reads of dirty items to the ca-
pacity device and thus performs much better with fewer dirty
reads. Write-around and write-through maintain consistent
copies and thus Orthus-CAS offers benefits independent of
the dirty-read ratio.

Target
Metric

NVM + Optane Optane + Flash
Throughput

GB/s
Avg. lat.

µs
P99 lat.

µs
Throughput

GB/s
Avg. lat.

µs
P99 lat.

µs
Open CAS 6.7 77 115 2.3 227 269
Throughput 8.0 64 147 3.9 132 289

Avg. lat. 8.0 64 143 3.9 132 285
P99 lat. 6.9 75 106 3.3 155 245

Table 2: Different Target Metrics. The figure shows Orthus-CAS
performance using different target performance metrics. We use read-only
workloads (concurrency level of 8, 95% hit ratio). The best result for each
metric is in bold.

6.1.3 Target Performance Metrics
NHC can improve different performance metrics by using dif-
ferent measure functions f . Table 2 shows the performance of
Open CAS and Orthus-CAS when using throughput, average
latency, and tail (P99) latency as target metrics. Optimizing
throughput or average latency yields similar improvements
to both metrics on both hierarchies, but increases tail latency.
This increase occurs because in each of these storage hier-
archies, the performance device has much better tail latency
than the capacity device; thus classic caching defaults to ap-
propriate behavior. When NHC is configured with P99 latency
as the target metric, Orthus-CAS has better tail latency than
Open CAS and than it does with other targets.

6.2 Orthus-KV: Static Workloads
We use Orthus-KV, the NHC implementation in Wisckey, to
show the benefits for real applications. Caching in Wisckey
uses write-around, due to the LSM-tree’s log-structured writes.
In these experiments we focus on Optane+Flash since it is
often used for key-value stores [12, 38]. We set the caching
layer to 33 GB, 1/3 of the 100 GB dataset. We use cgroup to
limit the OS page cache to 1 GB to focus on caching in the
storage system instead of caching in main memory.

Our initial evaluation uses the YCSB workloads [35]. Most
YCSB workloads are constant: their load does not change and
they have a stable key popularity distribution (i.e., Zipfian).
These workloads cover different read/write ratios (e.g., YCSB-
C: 100% reads, YCSB-A: 50% reads and 50% updates), as
well as various operations (e.g., YCSB-E involves 95% range
queries and 5% inserting new keys, while Workload-F has
50% read-modify-writes). We evaluate YCSB-D as a dynamic
workload (§6.3).

Gets: Figure 9 compares the throughput of Wisckey

1 8 16 24 32
0

100

200

300

400

Threads

Th
ro

ug
hp

ut
(K

Op
s/s

ec
) Classic

Orthus-KV

(a) V:1KB theta:0.6

1 8 16 24 32

Threads
(b) V:1KB theta:0.8

1 8 16 24 32

Threads
(c) V:16KB theta:0.8

Figure 9: Orthus-KV, YCSB-C Performance. YCSB-C workload
has 100% reads. We use 16B keys and 1KB or 16KB values. Accesses follow
a Zipfian distribution (theta).

1KB 1KB 16KB
0

1000

2000

3000

4000

I/O
 T

hr
ou

gh
pu

t (
M

B/
s)

Value:
Threads: 24 32 32

Op
ta

ne
Fl

as
h

Classic
Orthus-KV

Figure 10: Bandwidth
Breakdown. Optane/Flash
read bandwidth breakdown during
YCSB-C.

A B E F
0

100

200

300

Th
ro

ug
hp

ut
 (K

Op
s/s

ec
)

Workload

Classic
Orthus-KV

Figure 11: Other YCSB
Workloads. 16B keys, 1KB val-
ues, 32 threads and theta = 0.6.

and Orthus-KV for three YCSB-C workloads and different
amounts of concurrency. Orthus-KV achieves equivalent or
higher throughput than Wisckey for all workloads. Orthus-KV
significantly improves throughput at high load levels: with
32 threads, 46%, 30%, and 71% higher throughput for the
three workloads. When load is high enough to saturate Op-
tane, the relative benefits of Orthus-KV depend on how much
it can avoid unnecessary data movement and perform better
load distribution. Figure 10 illustrates these two benefits with
the read bandwidth delivered by each device. First, classic
caching suffers from unnecessary data admissions into Op-
tane: its effective Optane read bandwidth never reaches the
peak (2.3GB/s). NHC avoids this wasteful data movement.
Second, classic caching never delivers more than the maxi-
mum Optane bandwidth to the application. In contrast, NHC
improves the performance out of the hierarchy by distributing
some cache hits to the Flash SSD.

Updates, Inserts, and Range Queries: Figure 11 shows
Orthus-KV handles a range of operations (gets, updates, in-
serts, and range queries) and always performs at least as well
as Wisckey. NHC improves all YCSB workloads, with greater
benefits with more get operations.

Latency Improvement: With throughput as its target,
Orthus-KV reduces YCSB average latency by up to 42%. For
YCSB-C (32 threads, 0.8 theta), Orthus-KV provides 30% and
38% lower latency for 1KB and 16KB values, respectively.

CPU Overhead: Orthus-KV increases CPU utilization
slightly (0-2% for 24 threads) due to a few additional counters
that track caching behavior and device performance over time.

6.3 Orthus-KV: Dynamic Workloads
We evaluate NHC for dynamic workloads using the same
experimental setting as §6.2. We explore how Orthus-KV

handles time-varying workloads and dynamic working sets.

6.3.1 Dynamic Load
We evaluate how well NHC handles load changes with the
Facebook ZippyDB benchmark [31]. ZippyDB is a distributed
key-value store built on RocksDB and used by Facebook. The
ZippyDB benchmark generates key-value operations accord-
ing to realistic trace statistics: 85% gets, 14% puts, 1% scans
following a hot range-based model; the request rate models
the diurnal load sent to ZippyDB servers. We note that the
access patterns (e.g., read sizes) of the ZippyDB benchmark
vary significantly as their value sizes range from bytes to MBs.
We speed up the replay of Zippydb requests by 1000 to stress
the storage system and to better evaluate NHC’s reactions to
changes in load.

As shown in Figure 12a (top), Orthus-KV outperforms Wis-
ckey during the day by up to 100%, but performs similarly
when the load is lower at night. Figure 12a (bottom) shows
how Orthus-KV adjusts data and load admit ratios. During the
night, both are around 100%; Orthus-KV occasionally adjusts
the load admit ratio when the hit rate is stable, but quickly
returns to classic caching after finding no improvements. Dur-
ing the day, Orthus-KV keeps the data admit ratio at 0 and
adjusts the load admit ratio to adapt to the dynamic load.

6.3.2 Dynamic Data Locality
We demonstrate that NHC reacts well to abrupt changes in the
working set in Figure 12b. The experiments base on YCSB-C,
beginning with one working set (Zipfian theta=0.8, hot spot
at beginning of the key space), and then changing at time 10s
(a hot spot at the end of the key space). The graph shows that
when the working set changes (time=10s), Orthus-KV quickly
detects the change in hit rate and switches to classic caching:
the load and data admit ratios increase to 1.0. After the hit
rate begins to stabilize (time=11s), Orthus-KV tunes the load
admit ratio. Initially (11s-28s), because the hit rate is still
not high enough,Orthus-KV often identifies 1.0 as the best
load admit and returns to classic caching with data movement.
Approximately 20s after the workload change, the hit rate
stabilizes and Orthus-KV reaches steady-state performance
that is 60% higher than classic caching.

Finally, we show that NHC can outperform classic caching
even when the working set changes gradually. Figure 12c
shows Orthus-KV’s performance on YCSB-D (95% reads, 5%
inserts), where locality shifts over time as reads are performed
on recently-inserted values. Due to the locality changes and
not admitting new data to the cache, the hit rate in Orthus-KV
decreases over time, until NHC identifies that 1.0 is the best
load admit rate. Then Orthus-KV returns to classic caching
and raises the hit rate. Once the hit rate restabilizes, the cycle
resumes with Orthus-KV adjusting the load admit rate.

We also explore the alternative approach of always per-
forming data admission while tuning the load admit rate in
Figure 12c. As shown, this alternative maintains a stable
hit rate, avoiding abrupt phases of admitting new data; this

0

100

200

(K
O

ps
/s

)

0 40 80 120 160 200 240
0

50

100

Time (thousands of seconds)

R
at

io
 (%

)
Th

ro
ug

hp
ut

night night night

day day day

Load Admit Data Admit (window=5)

Orthus-KV Classic

(a) ZippyDB Workloads

0

100

200

0 10 20 30 40
0

50

100

Time (Seconds)

Change

Warm Up with Classic Caching

Tuning Stable

(b) Sudden Change in Data Locality

0

250

500

0 5 10 15 20
0

50

100

Time (seconds)

H=85%
H=68%

Orthus-KV (Data Admit=100)

(c) Gradual Changes in Data Locality

Figure 12: Orthus-KV with Dynamic Workloads. This figure shows the throughput of Orthus-KV and classic caching (top graphs), as well as
load/data admit ratio over time in Orthus-KV (bottom graphs). Because data admit is 0 or 1, we show a fractional windowed sum of its value over 5 time steps
for readability. In (a), we replay the ZippyDB benchmark on a single machine. The average value size is 16KB; the number of key ranges is 6. We use 32 threads
for the maximum load and adjust the number of threads dynamically according to the diurnal load model. We speed up the two-day workload by 1000⇥. In (b),
the workload is similar to YCSB-C 16KB value, 32 threads, but with two different working sets before and after 10s. In (c), we use YCSB-D with 16B keys, 1KB
values, 32 threads. We also show throughput of a modified Orthus-KV that always performs data admit in (c).

always performs better than classic caching but its peak per-
formance does not reach that of the default Orthus-KV. Our
results illustrate the interesting tradeoff between avoiding un-
necessary data movement and maintaining a stable hit rate for
dynamically changing workloads.

6.4 Comparisons with Prior Approaches
We now show that NHC significantly outperforms two other
approaches that have been suggested for utilizing the perfor-
mance of a capacity device: SIB [56] and LBICA [19]. SIB
targets HDFS clusters with many SSDs and HDDs, in which
case the aggregate HDD throughput is non-trivial: SIB uses
SSDs as a write buffer (does not admit any read miss), and pro-
poses using the HDDs for handling extra read traffic. LBICA
determines when a performance layer is under “burst load” at
which point it will not allocate new data to the performance
layer; unlike NHC, LBICA does not redirect any read hits.

To compare NHC against SIB and LBICA, we have imple-
mented these approaches in Open CAS. To make SIB suitable
for general-purpose caching environments, we have improved
it in two ways. First, SIB operates on a per-process granular-
ity instead of per-request: the traffic from some processes is
not allowed to use the SSD cache; we altered SIB so that it
adjusts load per-request (SIB+). Second, we modified SIB so
that it admits read misses into the cache (SIB++).

Using the experimental setup from §6.1 on Optane+Flash,
we start with a read-only workload in Figure 13.a. SIB+ does
not perform well because it does not admit read misses into
Optane. SIB++ performs better, but suffers when the workload
changes as in Figure 13.b; in these workloads, the amount
of write traffic is changed every period, for periods between
10 and 0.5 seconds. SIB cannot handle dynamic workloads
because SIB has two phases; in its training phase, SIB learns
the maximum performance of the caching device for the cur-
rent workload; in the inference phase, SIB judges whether
the caching device is saturated and, if it is, bypasses some

(a) Static Workload (b) Dynamic Workloads

Figure 13: NHC vs. SIB and LBICA. (a) uses a static read-only
workload. (b) uses dynamic workloads; the write-ratio is fixed in each period
(e.g., 10s), but changes (randomly between 0% to 50%) across periods. We
use workloads with parallelism/concurrency 16, 95% hits, runtime 100s on
Optane+Flash hierarchy.

processes (requests). As we have shown, the maximum per-
formance of modern devices depends on many workload pa-
rameters: read-write ratios, load, and access patterns. Thus, if
the workload changes in any way, SIB must either relearn the
target maximum performance or use an inaccurate target. In
our experiments, as the duration of each phase decreases, the
performance of SIB decreases dramatically. Unlike SIB, NHC
uses a simple, continuous feedback-based tuning approach
and thus converges rapidly and adapts to dynamic workloads
well. Finally, LBICA performs poorly because it does not
redirect any read hits to use the capacity device; it simply
does not allocate more data to the performance device when
it is overloaded.

7 Related Work
Algorithms and Policies in Hybrid Storage Systems: Al-
gorithms and policies for managing traditional hierarchy have
been studied extensively [65, 67, 68, 70, 78, 89, 91, 96, 104].
Techniques have been introduced to optimize data alloca-
tion [3,49,80,84,89,90], address translation [25,82], identify
hot data [4, 51, 53, 71, 73, 75, 79, 88, 91, 95] and perform data
migration [26, 33, 40, 43, 70, 87, 91, 100]. Most previous work
improves performance by focusing on workload access lo-
cality. In contrast, NHC improves by taking all devices and

workloads into account.
Storage Optimization: A long line of pioneering work

in storage management [21–23, 89, 91] shows how to trace
workloads and optimize storage decisions for improved perfor-
mance; NHC could fit into such a system, making short-term
decisions to handle more dynamic workload changes, leaving
longer-term optimization to a higher-level system.

Storage Aware Caching/Tiering: Our paper shares as-
pects with storage-aware caching/tiering [19,29,42,43,47,52,
56, 59, 60, 72, 93, 99], which considers more factors than hit
rate. For instance, Oh et al. [72] propose over-provisioning
in Flash to avoid the influence of SSD garbage collection.
Modern devices like NVDIMM and Optane SSD have distinc-
tive characteristics compared to Flash. We study the implica-
tions of these important emerging devices to caching/tiering.
BATMAN [34] shares a similar motivation to NHC: classic
caching is not effective when the bandwidth of the capacity
layer is a significant fraction of overall bandwidth. However,
it investigates a much simpler hierarchy with fixed perfor-
mance difference (4:1 between high-bandwidth memory and
DRAM). Given the fixed difference, BATMAN splits cache
accesses between HBM and DRAM statically. This approach
would not work effectively on modern hierarchies where per-
formance differences vary dynamically (e.g., depending upon
the amount of writes or the level of parallelism in the work-
load). Wu et al. [93] study tiering on SSDs and HDDs and
recognize a similar problem: SSDs (or faster devices) can
be the throughput bottleneck. To mitigate the problem, they
proposed to periodically migrate data from SSDs to HDDs
when the SSD response time is higher than that of HDDs.
This approach is limited in three aspects. First, due to its tier-
ing nature, it cannot react to workload changes quickly, its
migration traffic can be significant, and it requires extra meta-
data to track objects across devices. Second, similar to SIB
approach, it estimates workload intensity in a period and then
migrates data based on the estimation; it hence struggles with
dynamic workloads. Third, it is tuned for a specific hierarchy
(SSDs and hard drives). Unlike this approach, NHC focuses
on improving caching, adapts its behavior during runtime, can
react to complex and dynamic workloads, and works well on
a range of modern devices.

Managing NVM-based Devices: Other related work in-
tegrates NVM-based devices into the memory-storage hi-
erarchy [18, 27, 44, 45, 48, 63, 69, 83]. This work includes
extensive measurements for both Optane SSD [92] and Op-
tane DCPM [50, 97]. New file systems and databases were
proposed to manage NVDIMM [76, 94] and low latency
SSDs [61, 66, 101]. Many works have evaluated the poten-
tial benefits of caching and tiering on NVM. Kim et al. [55]
provide a simulation-based measurement of NVM caching
with performance numbers from a Micron all-PCM SSD pro-
totype. [41] provides a I/O cache simulator that assists the
analysis of caching workloads on new storage hierarchies.
Strata [62] and Ziggurat [103] are file systems that tier data

across a DRAM, NVM, and SSD hierarchy. Dulloor et al. [36],
Arulraj et al. [24] and Zhang et al. [102] proposed NVM-
aware data placement strategies for the new storage hierarchy.
These strategies optimize data placements in a longer pe-
riod (e.g., offline or periodically). NHC can work with them,
providing further improvement by handling more dynamic
workload changes. Finally, there have been many companies
utilizing NVM/ Optane SSD as a caching layer [30, 38, 39].
Our paper is the first to analyze general caching and tiering on
modern hierarchies through modeling and empirical evalua-
tion. We are also the first to propose a generic solution (NHC)
to realize the full performance benefits of such a hierarchy.

8 Conclusion
In this paper, we show how emerging storage devices have
strong implications for caching in modern hierarchies. We in-
troduced non-hierarchical caching, a new approach optimized
to extract peak performance from modern devices. NHC is
based upon a novel cache scheduling algorithm, which ac-
counts for workload and device characteristics to make alloca-
tion and access decisions. Through experiments, we showed
the benefits of NHC on a wide range of devices, cache con-
figurations, and workloads. We believe NHC can serve as a
better foundation to manage storage hierarchies.

Acknowledgments
We thank Song Jiang (our shepherd), the anonymous review-
ers and the members of ADSL for their valuable input. This
material was supported by funding from NSF CNS-1838733,
CNS-1763810, VMware, Intel, Seagate, and Microsoft. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and may not
reflect the views of NSF or any other institutions.

References
[1] 3D XPoint. https://en.wikipedia.org/wiki/3D_

XPoint.

[2] Accelerate Ceph Clusters with Intel Optane DC SSDs.
https://www.intel.com/content/dam/www/
public/us/en/documents/solution-briefs/
accelerate-ceph-clusters-with-optane-dc\
-ssds-brief.pdf.

[3] Cache (computing). https://en.wikipedia.org/
wiki/Cache_(computing).

[4] Cache replacement policies. https://en.
wikipedia.org/wiki/Cache_replacement_
policies.

[5] Caching and Tiering. https://storageswiss.com/
2014/01/15/whats-the-difference-between\
-tiering-and-caching/.

[6] Intel Optane DC Persistent Memory.
https://www.intel.com/content/www/
us/en/architecture-and-technology/
optane-dc-persistent-memory.html.

[7] Intel Optane DIMM Pricing. https:
//www.tomshardware.com/news/
intel-optane-dimm-pricing-performance,
39007.html.

[8] Intel Optane SSD 905P. https:
//www.tomshardware.com/reviews/
intel-optane-ssd-905p,5600-2.html.

[9] Intel SSD 520 Series. https://ark.intel.com/
content/www/us/en/ark/products/series/
66202/intel-ssd-520-series.html.

[10] Linux block layer statistics. https://www.kernel.
org/doc/Documentation/block/stat.txt.

[11] Memcached Exstore. https://memcached.org/
blog/nvm-caching/.

[12] Micron Heterogeneous-Memory Stor-
age Engine. https://www.micron.
com/products/advanced-solutions/
heterogeneous-memory-storage-engine.

[13] Micron X100 NVMe SSD. https://www.
micron.com/products/advanced-solutions/
3d-xpoint-technology/x100.

[14] Samsung 970 Pro. https://www.samsung.
com/semiconductor/minisite/ssd/product/
consumer/970pro/.

[15] Samsung 980 Pro Flash SSD. https:
//www.anandtech.com/show/15352/ces-2020\
-samsung-980-pro-pcie-40-ssd-makes\
-an-appearance.

[16] Samsung Z-NAND SSD. https://www.samsung.
com/semiconductor/ssd/z-ssd/.

[17] SDC2020: Caching on PMEM: an Iterative Approach.
https://www.youtube.com/watch?v=lTiw4ehHAP4,
2020.

[18] Ahmed Abulila, Vikram Sharma Mailthody, Zaid
Qureshi, Jian Huang, Nam Sung Kim, Jinjun Xiong,
and Wen-Mei Hwu. Flatflash: Exploiting the byte-
accessibility of ssds within a unified memory-storage
hierarchy. In Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
971–985. ACM, 2019.

[19] Saba Ahmadian, Reza Salkhordeh, and Hossein Asadi.
Lbica: A load balancer for i/o cache architectures. In
2019 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 1196–1201. IEEE, 2019.

[20] Ameen Akel, Adrian M Caulfield, Todor I Mollov, Ra-
jesh K Gupta, and Steven Swanson. Onyx: A prototype
phase change memory storage array. HotStorage, 1:1,
2011.

[21] Guillermo A Alvarez, Elizabeth Borowsky, Susie Go,
Theodore H Romer, Ralph Becker-Szendy, Richard
Golding, Arif Merchant, Mirjana Spasojevic, Alistair
Veitch, and John Wilkes. Minerva: An automated re-
source provisioning tool for large-scale storage sys-
tems. ACM Transactions on Computer Systems
(TOCS), 19(4):483–518, 2001.

[22] Eric Anderson, Michael Hobbs, Kim Keeton, Susan
Spence, Mustafa Uysal, and Alistair Veitch. Hippo-
drome: running circles around storage administration.
In Proceedings of the 1st USENIX Symposium on File
and Storage Technologies (FAST ’02), Monterey, Cali-
fornia, January 2002.

[23] Eric Anderson, Susan Spence, Ram Swaminathan, Ma-
hesh Kallahalla, and Qian Wang. Quickly finding near-
optimal storage designs. ACM Transactions on Com-
puter Systems (TOCS), 23(4):337–374, 2005.

[24] Joy Arulraj, Andy Pavlo, and Krishna Teja Malladi.
Multi-tier buffer management and storage system
design for non-volatile memory. arXiv preprint
arXiv:1901.10938, 2019.

[25] Shi Bai, Jie Yin, Gang Tan, Yu-Ping Wang, and Shi-
Min Hu. Fdtl: a unified flash memory and hard disk
translation layer. IEEE Transactions on Consumer
Electronics, 57(4):1719–1727, 2011.

[26] Swapnil Bhatia, Elizabeth Varki, and Arif Merchant.
Sequential prefetch cache sizing for maximal hit rate.
In 2010 IEEE International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommu-
nication Systems, pages 89–98. IEEE, 2010.

[27] Timothy Bisson and Scott A Brandt. Flushing policies
for nvcache enabled hard disks. In 24th IEEE Con-
ference on Mass Storage Systems and Technologies
(MSST 2007), pages 299–304. IEEE, 2007.

[28] Randal E Bryant, O’Hallaron David Richard, and
O’Hallaron David Richard. Computer systems: a pro-
grammer’s perspective, volume 281. Prentice Hall
Upper Saddle River, 2003.

[29] Nathan C Burnett, John Bent, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. Exploiting
gray-box knowledge of buffer-cache management. In
USENIX Annual Technical Conference, General Track,
pages 29–44, 2002.

[30] Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng
Zhu, Song Zheng, Yuhui Wang, and Guoqing Ma. Po-
larfs: an ultra-low latency and failure resilient dis-
tributed file system for shared storage cloud database.
Proceedings of the VLDB Endowment, 11(12):1849–
1862, 2018.

[31] Zhichao Cao, Siying Dong, Sagar Vemuri, and
David HC Du. Characterizing, modeling, and bench-
marking rocksdb key-value workloads at facebook. In
18th USENIX Conference on File and Storage Tech-
nologies (FAST 20), pages 209–223, 2020.

[32] Open CAS. Open Cache Acceleration Software.
https://open-cas.github.io/.

[33] Yue Cheng, Fred Douglis, Philip Shilane, Grant Wal-
lace, Peter Desnoyers, and Kai Li. Erasing belady’s
limitations: In search of flash cache offline optimal-
ity. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 379–392, 2016.

[34] Chiachen Chou, Aamer Jaleel, and Moinuddin Qureshi.
Batman: Techniques for maximizing system bandwidth
of memory systems with stacked-dram. In Proceedings
of the International Symposium on Memory Systems,
pages 268–280, 2017.

[35] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking
Cloud Serving Systems with YCSB. In Proceedings
of the ACM Symposium on Cloud Computing (SOCC

’10), pages 143–154, Indianapolis, IN, June 2010.

[36] Subramanya R Dulloor, Amitabha Roy, Zheguang
Zhao, Narayanan Sundaram, Nadathur Satish, Rajesh
Sankaran, Jeff Jackson, and Karsten Schwan. Data tier-
ing in heterogeneous memory systems. In Proceedings
of the Eleventh European Conference on Computer
Systems, page 15. ACM, 2016.

[37] Assaf Eisenman, Asaf Cidon, Evgenya Pergament,
Or Haimovich, Ryan Stutsman, Mohammad Alizadeh,
and Sachin Katti. Flashield: a hybrid key-value cache
that controls flash write amplification. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 65–78, 2019.

[38] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman,
Jens Axboe, Siying Dong, Kim Hazelwood, Chris Pe-
tersen, Asaf Cidon, and Sachin Katti. Reducing DRAM

Footprint with NV M in Facebook. In Proceedings of
the Thirteenth EuroSys Conference. ACM, 2018.

[39] Assaf Eisenman, Maxim Naumov, Darryl Gardner,
Misha Smelyanskiy, Sergey Pupyrev, Kim Hazelwood,
Asaf Cidon, and Sachin Katti. Bandana: Using Non-
volatile Memory for Storing Deep Learning Models.
arXiv preprint arXiv:1811.05922, 2018.

[40] Ahmed Elnably, Hui Wang, Ajay Gulati, and Peter J
Varman. Efficient qos for multi-tiered storage systems.
In HotStorage, 2012.

[41] Tyler Estro, Pranav Bhandari, Avani Wildani, and Erez
Zadok. Desperately seeking... optimal multi-tier cache
configurations. In 12th USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage 20),
2020.

[42] Brian Forney, Andrea Arpaci-Dusseau, and Remzi
Arpaci-Dusseau. Storage-aware caching: Revisiting
caching for heterogeneous storage systems. Technical
report, University of Wisconsin-Madison Department
of Computer Sciences, 2002.

[43] Jorge Guerra, Himabindu Pucha, Joseph S Glider,
Wendy Belluomini, and Raju Rangaswami. Cost ef-
fective storage using extent based dynamic tiering. In
FAST, volume 11, pages 20–20, 2011.

[44] Frank T Hady, Annie Foong, Bryan Veal, and Dan
Williams. Platform Storage Performance With 3D
XPoint Technology. Proceedings of the IEEE, 105(9),
2017.

[45] Theodore R Haining and Darrell DE Long. Manage-
ment policies for non-volatile write caches. In 1999
IEEE International Performance, Computing and Com-
munications Conference (Cat. No. 99CH36305), pages
321–328. IEEE, 1999.

[46] John L Hennessy and David A Patterson. Computer
architecture: a quantitative approach. Elsevier, 2011.

[47] David A Holland, Elaine Angelino, Gideon Wald, and
Margo I Seltzer. Flash caching on the storage client.
In Presented as part of the 2013 USENIX Annual Tech-
nical Conference (USENIX ATC 13), pages 127–138,
2013.

[48] Morteza Hoseinzadeh. A survey on tiering and caching
in high-performance storage systems. arXiv preprint
arXiv:1904.11560, 2019.

[49] Ilias Iliadis, Jens Jelitto, Yusik Kim, Slavisa Sarafi-
janovic, and Vinodh Venkatesan. Exaplan: queueing-
based data placement and provisioning for large tiered
storage systems. In 2015 IEEE 23rd International

Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, pages 218–
227. IEEE, 2015.

[50] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim,
Xiao Liu, Amirsaman Memaripour, Yun Joon Soh,
Zixuan Wang, Yi Xu, Subramanya R Dulloor, et al.
Basic performance measurements of the intel op-
tane dc persistent memory module. arXiv preprint
arXiv:1903.05714, 2019.

[51] Jaeheon Jeong and Michel Dubois. Cost-sensitive
cache replacement algorithms. In The Ninth Inter-
national Symposium on High-Performance Computer
Architecture, 2003. HPCA-9 2003. Proceedings., pages
327–337. IEEE, 2003.

[52] Song Jiang, Xiaoning Ding, Feng Chen, Enhua Tan,
and Xiaodong Zhang. Dulo: an effective buffer cache
management scheme to exploit both temporal and spa-
tial locality. In Proceedings of the 4th conference on
USENIX Conference on File and Storage Technologies,
volume 4, pages 8–8, 2005.

[53] Shudong Jin and Azer Bestavros. Popularity-aware
greedy dual-size web proxy caching algorithms. In
Proceedings 20th IEEE International Conference on
Distributed Computing Systems, pages 254–261. IEEE,
2000.

[54] Takayuki Kawahara. Scalable Spin-transfer Torque
RAM Technology for Normally-off Computing. IEEE
Design & Test of Computers, 28(1):52–63, 2010.

[55] Hyojun Kim, Sangeetha Seshadri, Clement L Dickey,
and Lawrence Chiu. Evaluating phase change memory
for enterprise storage systems: A study of caching and
tiering approaches. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST
14), pages 33–45, 2014.

[56] Jaehyung Kim, Hongchan Roh, and Sanghyun Park.
Selective i/o bypass and load balancing method for
write-through ssd caching in big data analytics. IEEE
Transactions on Computers, 67(4):589–595, 2017.

[57] Youngjae Kim, Aayush Gupta, Bhuvan Urgaonkar, Pi-
otr Berman, and Anand Sivasubramaniam. Hybrid-
Store: A Cost-Efficient, High-Performance Storage
System Combining SSDs and HDDs. MASCOTS ’11,
2011.

[58] Youngjae Kim, Brendan Tauras, Aayush Gupta, and
Bhuvan Urgaonkar. Flashsim: A Simulator for Nand
Flash-based Solid-State Drives. In Proceedings of the
First International Conference on Advances in System
Simulation (SIMUL ’09), Porto, Portugal, September
2009.

[59] Ricardo Koller, Leonardo Marmol, Raju Rangaswami,
Swaminathan Sundararaman, Nisha Talagala, and
Ming Zhao. Write policies for host-side flash caches.
In Presented as part of the 11th USENIX Conference
on File and Storage Technologies (FAST 13), pages
45–58, 2013.

[60] Ricardo Koller, Ali José Mashtizadeh, and Raju Ran-
gaswami. Centaur: Host-side ssd caching for storage
performance control. In 2015 IEEE International Con-
ference on Autonomic Computing, pages 51–60. IEEE,
2015.

[61] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsi-
das. Reaping the performance of fast {NVM} storage
with udepot. In 17th USENIX Conference on File and
Storage Technologies (FAST 19), pages 1–15, 2019.

[62] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A Cross Media File System. In Proceedings of the
26th ACM Symposium on Operating Systems Princi-
ples (SOSP ’17), Shanghai, China, October 2017.

[63] Chun-Hao Lai, Jishen Zhao, and Chia-Lin Yang. Leave
the cache hierarchy operation as it is: A new persis-
tent memory accelerating approach. In 2017 54th
ACM/EDAC/IEEE Design Automation Conference
(DAC), pages 1–6. IEEE, 2017.

[64] Lanyue Lu and Thanumalayan Sankaranarayana Pillai
and Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-
Dusseau. WiscKey: Separating Keys from Values in
SSD-conscious Storage. In Proceedings of the 14th
USENIX Conference on File and Storage Technologies
(FAST ’16), pages 133–148, Santa Clara, California,
February 2016.

[65] Donghee Lee, Jongmoo Choi, Jun-Hum Kim, Sam H.
Noh, Sang Lyul Min, Yookum Cho, and Chong Sang
Kim. On The Existence Of A Spectrum Of Policies
That Subsumes The Least Recently Used (LRU) And
Least Frequently Used (LFU) Policies. In Proceed-
ings of the 1999 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems (SIG-
METRICS ’99), Atlanta, Georgia, May 1999.

[66] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. Kvell: the design and implementation
of a fast persistent key-value store. In Proceedings
of the 27th ACM Symposium on Operating Systems
Principles, pages 447–461, 2019.

[67] Nimrod Megiddo and Dharmendra S Modha. Arc:
A self-tuning, low overhead replacement cache. In
Proceedings of the 2nd USENIX Symposium on File
and Storage Technologies (FAST ’03), San Francisco,
California, April 2003.

[68] Michael Mesnier, Feng Chen, Tian Luo, and Jason B
Akers. Differentiated storage services. In Proceedings
of the Twenty-Third ACM Symposium on Operating
Systems Principles, pages 57–70. ACM, 2011.

[69] Sparsh Mittal and Jeffrey S Vetter. A survey of software
techniques for using non-volatile memories for storage
and main memory systems. IEEE Transactions on
Parallel and Distributed Systems, 27(5):1537–1550,
2015.

[70] David Montgomery. Extent migration scheduling for
multi-tier storage architectures, November 5 2013. US
Patent 8,578,107.

[71] Junpeng Niu, Jun Xu, and Lihua Xie. Hybrid stor-
age systems: a survey of architectures and algorithms.
IEEE Access, 6:13385–13406, 2018.

[72] Yongseok Oh, Jongmoo Choi, Donghee Lee, and
Sam H Noh. Caching less for better performance:
balancing cache size and update cost of flash memory
cache in hybrid storage systems. In FAST, volume 12,
2012.

[73] Elizabeth J O’neil, Patrick E O’neil, and Gerhard
Weikum. The lru-k page replacement algorithm
for database disk buffering. Acm Sigmod Record,
22(2):297–306, 1993.

[74] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard
Weikum. The LRU-K Page Replacement Algorithm
For Database Disk Buffering. In Proceedings of
the 1993 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’93), pages 297–306,
Washington, DC, May 1993.

[75] Dongchul Park and David HC Du. Hot Data Identifica-
tion for Flash-Based Storage Systems Using Multiple
Bloom Filters. In Proceedings of the 27th IEEE Sym-
posium on Mass Storage Systems and Technologies
(MSST ’11), Denver, Colorado, May 2011.

[76] Sheng Qiu and AL Narasimha Reddy. Nvmfs: A hybrid
file system for improving random write in nand-flash
ssd. In 2013 IEEE 29th Symposium on Mass Storage
Systems and Technologies (MSST), pages 1–5. IEEE,
2013.

[77] Simone Raoux, Geoffrey W Burr, Matthew J Bre-
itwisch, Charles T Rettner, Y-C Chen, Robert M Shelby,
Martin Salinga, Daniel Krebs, S-H Chen, H-L Lung,
et al. Phase-change random access memory: A scalable
technology. IBM Journal of Research and Develop-
ment, 52(4.5):465–479, 2008.

[78] Benjamin Reed and Darrell DE Long. Analysis
of caching algorithms for distributed file systems.
ACM SIGOPS Operating Systems Review, 30(3):12–
21, 1996.

[79] John T. Robinson and Murthy V. Devarakonda. Data
cache management using frequency-based replacement.
In Proceedings of the 1990 ACM SIGMETRICS Con-
ference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’90), Boulder, Colorado, April
1990.

[80] Reza Salkhordeh, Hossein Asadi, and Shahriar
Ebrahimi. Operating system level data tiering using
online workload characterization. The Journal of Su-
percomputing, 71(4):1534–1562, 2015.

[81] Mohit Saxena, Michael M Swift, and Yiying Zhang.
Flashtier: a lightweight, consistent and durable storage
cache. In Proceedings of the 7th ACM european con-
ference on Computer Systems, pages 267–280. ACM,
2012.

[82] Andre Schaefer and Matthias Gries. Adaptive address
mapping with dynamic runtime memory mapping se-
lection, 2012. US Patent 8,135,936.

[83] Priya Sehgal, Sourav Basu, Kiran Srinivasan, and
Kaladhar Voruganti. An empirical study of file systems
on nvm. In 2015 31st Symposium on Mass Storage
Systems and Technologies (MSST), pages 1–14. IEEE,
2015.

[84] Haixiang Shi, Rajesh Vellore Arumugam, Chuan Heng
Foh, and Kyawt Kyawt Khaing. Optimal disk storage
allocation for multitier storage system. IEEE Transac-
tions on magnetics, 49(6):2603–2609, 2013.

[85] Abraham Silberschatz, Greg Gagne, and Peter B
Galvin. Operating system concepts. Wiley, 2018.

[86] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh
Balakrishnan, and Ted Wobber. Extending ssd lifetimes
with disk-based write caches. In FAST, volume 10,
pages 101–114, 2010.

[87] Elizabeth Varki, Allen Hubbe, and Arif Merchant. Im-
prove prefetch performance by splitting the cache re-
placement queue. In IEEE International Conference
on Advanced Infocomm Technology, pages 98–108.
Springer, 2012.

[88] Giuseppe Vietri, Liana V Rodriguez, Wendy A Mar-
tinez, Steven Lyons, Jason Liu, Raju Rangaswami,
Ming Zhao, and Giri Narasimhan. Driving cache re-
placement with ml-based lecar. In 10th USENIX Work-
shop on Hot Topics in Storage and File Systems (Hot-
Storage 18), 2018.

[89] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad,
and Nohhyun Park. Cache modeling and optimization
using miniature simulations. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 487–
498, 2017.

[90] Hui Wang and Peter Varman. Balancing fairness and
efficiency in tiered storage systems with bottleneck-
aware allocation. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST
14), pages 229–242, 2014.

[91] John Wilkes, Richard Golding, Carl Staelin, and Tim
Sullivan. The HP AutoRAID Hierarchical Storage
System. ACM Transactions on Computer Systems,
14(1):108–136, February 1996.

[92] Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-
Dusseau. Towards an unwritten contract of intel op-
tane ssd. In 11th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 19). USENIX
Association, Renton, WA, 2019.

[93] Xiaojian Wu and AL Narasimha Reddy. A novel
approach to manage a hybrid storage system. JCM,
7(7):473–483, 2012.

[94] Jian Xu and Steven Swanson. NOVA: A log-structured
file system for hybrid volatile/non-volatile main mem-
ories. In 14th USENIX Conference on File and Storage
Technologies (FAST 16), pages 323–338, 2016.

[95] Gala Yadgar, Michael Factor, and Assaf Schuster.
Karma: Know-it-all replacement for a multilevel cache.
In Fast, volume 7, pages 25–25, 2007.

[96] Gala Yadgar, Michael Factor, and Assaf Schuster. Co-
operative caching with return on investment. In 2013
IEEE 29th Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–13. IEEE, 2013.

[97] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steven Swanson. An empirical guide
to the behavior and use of scalable persistent memory.
arXiv preprint arXiv:1908.03583, 2019.

[98] Juncheng Yang, Yao Yue, and KV Rashmi. A large
scale analysis of hundreds of in-memory cache clusters
at twitter. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
191–208, 2020.

[99] Zhengyu Yang, Morteza Hoseinzadeh, Allen Andrews,
Clay Mayers, David Thomas Evans, Rory Thomas Bolt,
Janki Bhimani, Ningfang Mi, and Steven Swanson. Au-
totiering: automatic data placement manager in multi-
tier all-flash datacenter. In 2017 IEEE 36th Interna-
tional Performance Computing and Communications
Conference (IPCCC), pages 1–8. IEEE, 2017.

[100] Gong Zhang, Lawrence Chiu, and Ling Liu. Adaptive
data migration in multi-tiered storage based cloud envi-
ronment. In 2010 IEEE 3rd International Conference
on Cloud Computing, pages 148–155. IEEE, 2010.

[101] Jie Zhang, Miryeong Kwon, Donghyun Gouk,
Sungjoon Koh, Changlim Lee, Mohammad Alian, My-
oungjun Chun, Mahmut Taylan Kandemir, Nam Sung
Kim, Jihong Kim, et al. Flashshare: punching through
server storage stack from kernel to firmware for
ultra-low latency ssds. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
18), pages 477–492, 2018.

[102] Lei Zhang, Reza Karimi, Irfan Ahmad, and Ymir Vig-
fusson. Optimal data placement for heterogeneous
cache, memory, and storage systems. Proceedings of
the ACM on Measurement and Analysis of Computing
Systems, pages 1–27, 2020.

[103] Shengan Zheng, Morteza Hoseinzadeh, and Steven
Swanson. Ziggurat: a tiered file system for non-volatile
main memories and disks. In 17th USENIX Conference
on File and Storage Technologies (FAST 19), pages
207–219, 2019.

[104] Yuanyuan Zhou, James F. Philbin, and Kai Li. The
Multi-Queue Replacement Algorithm for Second Level
Buffer Caches. In Proceedings of the USENIX Annual
Technical Conference (USENIX ’01), pages 91–104,
Boston, Massachusetts, June 2001.

