
The Storage Hierarchy is Not a Hierarchy:
Optimizing Caching on Modern Storage Devices with Orthus

Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu, Ramnatthan Alagappan†,
Rathijit Sen‡, Kwanghyun Park‡, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

University of Wisconsin–Madison †VMware Research ‡Microsoft

1 Introduction
The notion of hierarchy pervades computer systems. For in-
stance, memory and storage systems are organized in a hier-
archy, with each layer providing higher capacity but lower
performance than the layer above it.

A long-standing strategy to manage such hierarchies is
that of caching. Because the fast layer (Dhi) usually offers
significantly higher performance than the capacity layer (Dlo),
caching strives to ensure that most accesses hit the fast layer
by placing frequently-accessed data in it. Over the years,
caching has thus been optimized for one goal: maximizing
the hits to the fast layer.

While this goal may be appropriate for traditional hierar-
chies, it is ill-suited and inadequate for hierarchies with emerg-
ing storage devices. The key problem is that modern devices
exhibit overlapping performance characteristics. For example,
as shown in Figure 1, in some situations (namely, with low
levels of parallelism), the performance device outperforms the
capacity one substantially (like in a traditional hierarchy), and
thus classic caching would work well. However, in some cir-
cumstances (e.g., with high levels of parallelism), the devices
deliver similar performance. In some cases, the “slow” de-
vice may even offer better performance than the “fast” device
(e.g., NVM vs Optane with many concurrent writes). Classic
caching, which focuses solely on maximizing hit rate, cannot
reap the significant performance offered by the capacity de-
vice. Thus, it is essential to rethink how to manage modern
devices in the hierarchy.

We present non-hierarchical caching (NHC) [2]1, a new
approach to caching in modern storage hierarchies. The key
insight behind NHC is to route some requests to the capacity
device, in cases where sending them to the fast device does
not yield higher performance. The result is that NHC delivers
the aggregate performance of all the devices in the hierar-
chy (in contrast to classic caching that can approximate the
performance of only the fast device).

We have implemented NHC in a block-layer caching kernel
module and a user-space caching layer for a key-value store.
Our experiments show that NHC delivers substantially better
performance (by up to 2×) than classic caching on several
modern hierarchies under a range of realistic workloads.

2 Non-Hierarchical Caching
NHC uses a new architecture and a novel cache-scheduling
algorithm to effectively use the performance of the capacity

1research.cs.wisc.edu/adsl/Publications/fast21-kan.pdf

1 2 4 8 16 32

-2
+2
+4
+6
+8

+10
+12
+14
+16

Reads

Threads

P
er

fo
rm

an
ce

 R
at

io DRAM/NVM
NVM/Optane
Optane/Flash

1 2 4 8 16 32

-2
+2
+4
+6
+8

+10
+12
+14
+16

Writes

Threads

Figure 1: Performance Ratios Across Modern Devices. The figure
compares 4KB reads/writes throughput across device pairings (NVM: an
Intel Optane DCPM module, Optane: an Optane 905P SSD, Flash: a Flash
SSD). For any pair X/Y, X

Y is plotted if the performance of X ≥ Y ; otherwise,
−Y
X is plotted(in the gray region). Note there is no value between -1 and +1.

Non-Hierarchical 
Cache Scheduler

Optimizer
X = argmax f(X) Load 

Admission 
Switch

Hit?

Capacity 
Layer (Dlo)

Performant 
Layer (Dhi)

User/Application

Monitor f(X)

Tune 

Insert(item) Get/Lookup(item)

NO

YES

Classic Cache Controller

data_admit

TRUE

clean ^
(p > load admit)

<latexit sha1_base64="y92lmO0Py2E93QUQhz0DZ5YNjm8=">AAACHnicbVBNSxxBEK1RE83mw4055tK4CIbAMiOInsKilxwVXBV2lqWmp2Zt7OkZumvUZdhf4sW/4sWDIQRy0n9j764Hvx40/Xiviqp6SamV4zC8D+bmF969X1z60Pj46fOX5ebXlUNXVFZSVxa6sMcJOtLKUJcVazouLWGeaDpKTncn/tEZWacKc8Cjkvo5Do3KlET20qC5GTNdcJLV05+5lprQjMciPqd0SCKOG+ul+CWELjCNB5jmin80Bs1W2A6nEK9J9EhandX45xUA7A2a/+O0kFVOhqVG53pRWHK/RsvKDxw34spRifIUh9Tz1GBOrl9PzxuLNa+kIiusf4bFVH3aUWPu3ChPfGWOfOJeehPxLa9Xcbbdr5UpKyYjZ4OySgsuxCQrkSpLkvXIE5RW+V2FPEGLkn2ikxCilye/Jocb7ShsR/tRq7MDMyzBd1iFdYhgCzrwG/agCxIu4Rpu4U9wFdwEf4N/s9K54LHnGzxDcPcAYjijZQ==</latexit><latexit sha1_base64="rWk5hLQFaB5Vb/VQtPvLSZMfAMo=">AAACHnicbVDLSitBEO3xbfRq1KWbxiAoF8LMhYuuJOjGpYJRIRNCTU9NbOzpGbpr1DDkL9y58VfcuFBEcKV/Yydx4etA04dzqqiqE+VKWvL9N29sfGJyanpmtjI3/2dhsbq0fGyzwghsikxl5jQCi0pqbJIkhae5QUgjhSfR+d7AP7lAY2Wmj6iXYzuFrpaJFEBO6lT/h4RXFCXl8CcqhULQ/T4PLzHuIg/DykbOdzhXGcRhB+JU0malU635dX8I/pMEH6TWWAv/Xr81eged6ksYZ6JIUZNQYG0r8HNql2BIuoH9SlhYzEGcQxdbjmpI0bbL4Xl9vu6UmCeZcU8TH6qfO0pIre2lkatMgc7sd28g/ua1Ckq226XUeUGoxWhQUihOGR9kxWNpUJDqOQLCSLcrF2dgQJBLdBBC8P3kn+T4Xz3w68FhUGvsshFm2CpbYxssYFuswfbZAWsywW7YHXtgj96td+89ec+j0jHvo2eFfYH3+g5roqTr</latexit><latexit sha1_base64="rWk5hLQFaB5Vb/VQtPvLSZMfAMo=">AAACHnicbVDLSitBEO3xbfRq1KWbxiAoF8LMhYuuJOjGpYJRIRNCTU9NbOzpGbpr1DDkL9y58VfcuFBEcKV/Yydx4etA04dzqqiqE+VKWvL9N29sfGJyanpmtjI3/2dhsbq0fGyzwghsikxl5jQCi0pqbJIkhae5QUgjhSfR+d7AP7lAY2Wmj6iXYzuFrpaJFEBO6lT/h4RXFCXl8CcqhULQ/T4PLzHuIg/DykbOdzhXGcRhB+JU0malU635dX8I/pMEH6TWWAv/Xr81eged6ksYZ6JIUZNQYG0r8HNql2BIuoH9SlhYzEGcQxdbjmpI0bbL4Xl9vu6UmCeZcU8TH6qfO0pIre2lkatMgc7sd28g/ua1Ckq226XUeUGoxWhQUihOGR9kxWNpUJDqOQLCSLcrF2dgQJBLdBBC8P3kn+T4Xz3w68FhUGvsshFm2CpbYxssYFuswfbZAWsywW7YHXtgj96td+89ec+j0jHvo2eFfYH3+g5roqTr</latexit><latexit sha1_base64="0Oj6zeKq0otzbbMGO9kjtiu9Lh0=">AAACHnicbVBNS8NAEN34bf2qevSyWAS9lEQQPUnRi0cFq0JTymQzqYubTdidqCX0l3jxr3jxoIjgSf+N29qDXw+Wfbw3w8y8KFfSku9/eGPjE5NT0zOzlbn5hcWl6vLKmc0KI7ApMpWZiwgsKqmxSZIUXuQGIY0UnkdXhwP//BqNlZk+pV6O7RS6WiZSADmpU90JCW8pSsrhT1QKhaD7fR7eYNxFHoaVzZzvc64yiMMOxKmkrUqnWvPr/hD8LwlGpMZGOO5U38I4E0WKmoQCa1uBn1O7BEPSDexXwsJiDuIKuthyVEOKtl0Oz+vzDafEPMmMe5r4UP3eUUJqbS+NXGUKdGl/ewPxP69VULLXLqXOC0ItvgYlheKU8UFWPJYGBameIyCMdLtycQkGBLlEByEEv0/+S86264FfD06CWuNgFMcMW2PrbJMFbJc12BE7Zk0m2B17YE/s2bv3Hr0X7/WrdMwb9ayyH/DePwFPuaHc</latexit>

dirty _
p  load admit

<latexit sha1_base64="TPbXGj6XiLHOq3vqXY4hu/gLLF8=">AAACHXicbVC7TsNAEFzzDOYVoKQ5ESFRoMhGSFBG0FCCREikOLLO5zWcOD/wrRGRlR+h4VdoKECIggbR8SlcHgUEprnRzI5ud4JMSU2O82lNTc/Mzs1XFuzFpeWV1era+oVOi1xgU6QqzdsB16hkgk2SpLCd5cjjQGEruD4e+K1bzLVMk3PqZdiN+WUiIyk4Gcmv7nuEdxRE5fAlKkOZU6/fZ55JMs+zM8PwhjGV8tDzeRhLsv1qzak7Q7C/xB2TWoN5u18AcOpX370wFUWMCQnFte64TkbdkuckhcK+7RUaMy6u+SV2DE14jLpbDq/rs22jhCwy60RpQmyo/kyUPNa6FwdmMuZ0pSe9gfif1ykoOuyWMskKwkSMPooKxShlg6qYqQIFqZ4hXOTS7MrEFc+5IFPooAR38uS/5GKv7jp198ytNY5ghApswhbsgAsH0IATOIUmCLiHR3iGF+vBerJerbfR6JQ1zmzAL1gf30CGpBM=</latexit><latexit sha1_base64="PPwACCNid0bo6xPn71z3x5nq5F4=">AAACHXicbVC7SgNBFJ31lbi+opY2g0GwkLArgpZBG8sI5gHZJczO3k2GzD7cuSuGJR+ijb9iY6GIhY3Y+yFOHoUmnmYO59zD3Hu8RAqFlvVlLCwuLa8Uiqvm2vrG5lZpe6eh4izlUOexjNOWxxRIEUEdBUpoJSmw0JPQ9PoXI795C6kScXSNgwTckHUjEQjOUEud0omDcIdekI9fxNwXKQ6GQ+roJHUcM9EMbiiVMfOdDvNDgWanVLYq1hh0nthTUq5S5+jbvy/UOqUPx495FkKEXDKl2raVoJuzFAWXMDSdTEHCeJ91oa1pxEJQbj6+bkgPtOLTQK8TxBHSsfo7kbNQqUHo6cmQYU/NeiPxP6+dYXDm5iJKMoSITz4KMkkxpqOqqK4COMqBJoynQu9KeY+ljKMudFSCPXvyPGkcV2yrYl/Z5eo5maBI9sg+OSQ2OSVVcklqpE44eSBP5IW8Go/Gs/FmvE9GF4xpZpf8gfH5A6GqpRs=</latexit><latexit sha1_base64="PPwACCNid0bo6xPn71z3x5nq5F4=">AAACHXicbVC7SgNBFJ31lbi+opY2g0GwkLArgpZBG8sI5gHZJczO3k2GzD7cuSuGJR+ijb9iY6GIhY3Y+yFOHoUmnmYO59zD3Hu8RAqFlvVlLCwuLa8Uiqvm2vrG5lZpe6eh4izlUOexjNOWxxRIEUEdBUpoJSmw0JPQ9PoXI795C6kScXSNgwTckHUjEQjOUEud0omDcIdekI9fxNwXKQ6GQ+roJHUcM9EMbiiVMfOdDvNDgWanVLYq1hh0nthTUq5S5+jbvy/UOqUPx495FkKEXDKl2raVoJuzFAWXMDSdTEHCeJ91oa1pxEJQbj6+bkgPtOLTQK8TxBHSsfo7kbNQqUHo6cmQYU/NeiPxP6+dYXDm5iJKMoSITz4KMkkxpqOqqK4COMqBJoynQu9KeY+ljKMudFSCPXvyPGkcV2yrYl/Z5eo5maBI9sg+OSQ2OSVVcklqpE44eSBP5IW8Go/Gs/FmvE9GF4xpZpf8gfH5A6GqpRs=</latexit><latexit sha1_base64="rzsCFgyraUrGySQ4B6aESV5gca8=">AAACHXicbVC7TsNAEDzzDOFloKQ5ESFRRTZCgjKChjJI5CHFVnQ+r5NTzg98a0Rk+Udo+BUaChCioEH8DRcnBSRMc6OZHd3ueIkUCi3r21haXlldW69sVDe3tnd2zb39toqzlEOLxzJOux5TIEUELRQooZukwEJPQscbXU38zj2kSsTRLY4TcEM2iEQgOEMt9c0zB+EBvSAvX8TcFymOi4I6Okkdp5poBneUypj5Tp/5ocBq36xZdasEXST2jNTIDM2++en4Mc9CiJBLplTPthJ0c5ai4BKKqpMpSBgfsQH0NI1YCMrNy+sKeqwVnwZ6nSCOkJbq70TOQqXGoacnQ4ZDNe9NxP+8XobBhZuLKMkQIj79KMgkxZhOqqK6CuAox5owngq9K+VDljKOutBJCfb8yYukfVq3rbp9Y9cal7M6KuSQHJETYpNz0iDXpElahJNH8kxeyZvxZLwY78bHdHTJmGUOyB8YXz/ZVaJL</latexit>

Figure 2: Non-Hierarchical Cache Architecture. NHC is transpar-
ent to users as before. Every classic caching implementation can be converted
to a NHC one. Notice that the decision points only tune read hits/misses.

device. NHC is compatible with all classic caching policies,
performs strictly better than classic caching, and needs no
prior knowledge of the devices or the workload.
2.1 NHC Architecture
Classic caching can be upgraded to NHC by introducing a set
of decision points to its cache controller and a cache scheduler
as in Figure 2. The classic cache controller is used to direct
application reads and writes to devices (e.g., Dhi and Dlo),
as well as to control content in Dhi (e.g., according to LRU).
The non-hierarchical cache scheduler tracks performance and
controls the behavior of cache controller.

A boolean flag data_admit (da) and a variable
load_admit (la) enable the NHC scheduler to perform this
control. When a read miss occurs on Dhi, the da flag deter-
mines the actions: when da is set, the missed data item is
handled by the classic cache-replacement policy; when da is
not set, Dlo directly serves the data. Classic caching is the
case where da is true.

The la variable regulates how read hits are treated and
indicates the percentage of read hits to be sent to Dhi; if la is
0, every read hit is sent to Dlo. Specifically, a random number

1



R ∈ [0,1.0] is generated upon a read hit; the request is sent to
Dhi when R <= la; otherwise, it is sent to Dlo. la is always
1 in classic caching.

NHC is compliant with any classic write-allocation pol-
icy that manages write hits/misses. According to the policy,
NHC decides whether to allow write misses into Dhi or not;
da and la do not influence writes. If the system is set up with
write-back, NHC does not send dirty read hits to Dlo.
2.2 NHC Scheduler Algorithm
The NHC scheduler adjusts the behavior of the cache con-
troller to optimize a target metric. The target may either be a
user-level (e.g., ops/sec) or device-level (e.g., request latency)
metric. f is a function that measures the target metric. The
scheduler has two states: to increase Dhi’s hit rate by perform-
ing classic caching, or to maintain the cached data constant
while adjusting the load sent to each device.

State 1: Improve hit rate. In this state, NHC acts the same
as classic caching (with da as true and la= 1). By doing so,
NHC warms up Dhi with hot data items, increasing the hit
rate for Dhi. The NHC Scheduler tracks the hit rate and ends
this phase when the hit rate is relatively stable.

State 2: Adjust load between devices. After Dhi has a
high hit rate, the NHC scheduler will examine whether of-
floading some read hits to Dlo would improve the overall
performance. da is set to false and feedback (∆ f ) is used in
this state to optimize the performance target. la is iteratively
calibrated to improve the target metric. In every iteration,
like gradient-descent, f (la ± step) is measured; la is then
updated in the direction to enhance f . If the scheduler finds
that optimal la is 1, it ceases tuning and goes back to State
1. When the workload locality varies substantially, the NHC
scheduling procedure is restarted.

3 Evaluation
We have implemented NHC in Orthus-CAS, a block-layer
caching kernel module, and Orthus-KV, a user-level caching
layer for a key-value store. Our implementations support tar-
get functions such as throughput (default), and average and
tail (P99) latency.
3.1 Orthus-CAS on Various Storage Hierarchies
Figure 3 shows the performance of Orthus-CAS in multiple
modern hierarchies. Orthus-CAS works in the same manner
as classic caching when the load is light. However, when
the workload is able to exploit the performance device, NHC
substantially outperforms classic caching by leveraging the
usable performance from the capacity device. Under high load
(e.g., Load-2.0), NHC increases performance by 21% - 54%
for DRAM+NVM, NVM+Optane and Optane+Flash hierar-
chies. Our tests with FlashSim also show how practitioners
can predict the benefit of using NHC in their hierarchies.
3.2 Orthus-KV with Dynamic Workloads
Figure 4 demonstrates how NHC manages shifts in workload
with the Facebook ZippyDB benchmark [1]. As shown in the

FlashSim
50:10

DRAM + NVM NVM +
Optane SSD

Optane SSD
+ Flash

FlashSim
50:25

 

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
Th

ro
ug

hp
ut

23

45

4724

44

48

31 77 8631

63 79

45 11
4

14
339 89 10

2

61 15
3

17
250 11

6 11
2Load-0.5 1.0 1.5 2.0

Classic Orthus-CAS

Figure 3: Orthus-CAS on Various Hierarchies. The figure shows
NHC’s performance under read-only workloads (95% hit rates) with different
amounts of load. We use the same devices as in Figure 1. We also use Flash-
Sim to simulate devices with different performance characteristics. Load-1.0
is specified as the minimum load to reach full cache-device read bandwidth;
Load-0.5, 1.5, and 2.0 are created by scaling Load-1.0. All throughputs are
normalized to the maximum read bandwidth of the caching device. Latency
(µs) is shown above each bar (not comparable across hierarchies).

0

100

200

(K
O

ps
/s

)
0 40 80 120 160 200 240

0

50

100

Time (thousands of seconds)

R
at

io
 (

%
)

T
hr

ou
gh

pu
t

night night night

day day day

Load Admit Data Admit (window=5)

Orthus-KV Classic

Figure 4: Orthus-KV With ZippyDB workloads. This figure shows
the Orthus-KV throughput (top) as well as load/data admit ratios over time
in Orthus-KV (bottom). We focus on the hierarchy of Optane/Flash. The
Facebook ZippyDB benchmark generates key-value operations based on
realistic trace statistics; the request rate models the diurnal load sent to
ZippyDB servers. We speed up the replay by 1000 to stress the storage system
and to better evaluate NHC’s reactions to shifting loads.

top graph, Orthus-KV beats classic caching by up to 100%
during the day. The bottom graph illustrates how Orthus-KV
changes data and load admit ratios. They are both around
100% throughout the night. During the day, Orthus-KV holds
the data admit ratio at 0 and changes the load admit ratio to
respond to varying loads.

Acknowledgments
We thank NSF (CNS-1838733, CNS-1763810), VMware, In-
tel, Seagate, Samsung, and Microsoft for their support. Opin-
ions expressed in this material are those of the authors.

References
[1] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC Du. Charac-

terizing, modeling, and benchmarking RocksDB key-value workloads at
Facebook. In 18th USENIX Conference on File and Storage Technolo-
gies (FAST 20), pages 209–223, 2020.

[2] Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu, Ramnatthan Alagappan,
Rathijit Sen, Kwanghyun Park, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. The Storage Hierarchy is Not a Hierarchy: Optimizing
Caching on Modern Storage Devices with Orthus. In 19th USENIX
Conference on File and Storage Technologies (FAST 21), pages 307–323,
2021.

2


