
Too Many Knobs to Tune?
Towards Faster Database Tuning by Pre-selecting Important Knobs

Konstantinos Kanellis, Ramnatthan Alagappan, and Shivaram Venkataraman

University of Wisconsin – Madison

Abstract. To achieve high performance, recent research has
shown that it is important to automatically tune the configura-
tion knobs present in database systems. However, as database
systems usually have 100s of knobs, auto-tuning frameworks
spend a significant amount of time exploring the large con-
figuration space and need to repeat this as workloads change.
Given this challenge, we ask a more fundamental question
of how many knobs do we need to tune in order to achieve
good performance. Surprisingly, we find that with YCSB
workload-A on Cassandra, tuning just five knobs can achieve
99% of the performance achieved by the best configuration
that is obtained by tuning many knobs. We also show that our
results hold across workloads and applies to other systems
like PostgreSQL, motivating the need for tools that can au-
tomatically filter out the knobs that need to be tuned. Based
on our results, we propose an initial design for accelerating
auto-tuners and detail some future research directions.

1 Introduction
Tuning configuration parameters is critical for achieving high
performance in database systems. This has been true in the
past [8, 12, 20] and recent research shows that this is still the
case [1, 23, 24]. However, database systems typically have
hundreds of configuration knobs that determine the system’s
runtime behavior [22]; for example, PostgreSQL has about
170 knobs [23] and Apache Cassandra has around 155.

Manually finding the important knobs and their optimal
values is thus a daunting task even for experienced practition-
ers. Consequently, researchers have resorted to automatic
ways to tune knobs [9]. Recent auto-tuning methods for
database systems typically fall into two classes: search-based
approaches [24] and learning-based (ML) methods [1, 23].
In both cases, one starts with a set of knobs and a range of
valid values for them, and then the tuning system tries to find
the optimal values for each knob to maximize or minimize a
specified objective (e.g., throughput or latency). The time it
takes to tune is directly dependent on the number of knobs that
needs to be tuned [23, 24]. With a larger number of knobs, the
search space for search-based methods expands vastly, mak-
ing it slower to find optimal values for all knobs. Similarly,
ML-based approaches require a larger training dataset as we
increase the number of knobs, with representative samples
required from different values for each knob.

Given this, in this work, we ask the following fundamental
question: how many knobs do we need to tune to achieve good

performance? Is this a smaller subset of the entire set? To
answer this question, we conduct a detailed and systematic
measurement-based study. Specifically, we measure the per-
formance of a target system under different configurations and
use learning-based techniques to find how many and which
knobs need to be tuned for high performance. Our results
surprisingly show that tuning just five knobs can achieve 99%
of the performance achieved by the best configuration (which
tunes many knobs) for the YCSB-A workload in Cassandra.

Motivated by this result, we also extend our experiments
across different workloads and systems. Our experiments
show that similar results do indeed hold for different work-
loads (e.g., YCSB-B in Cassandra) and across different sys-
tems (PostgreSQL running YCSB-A and YCSB-B). Finally,
we also compute the similarity between the sets of important
knobs across workloads and find that there is a significant
overlap of important knobs across some workloads.

Based on the above results, we argue that it is possible to
significantly accelerate auto-tuning approaches by automat-
ically filtering the most important configuration knobs. We
propose a new design where we run a filtering or pre-selection
phase to determine the important knobs, and we present some
initial approaches to realize this design. We also describe
future directions for research in understanding how different
hardware or metrics change important knobs, and how we can
perform auto-tuning while maintaining reliability guarantees.

2 Background and Motivation
We begin by providing a brief background on auto-tuners and
describing the challenges in existing tuning frameworks.

2.1 Automatically Tuning Database Systems
Exploring the entire space of configuration knobs in database
systems is time-consuming and intractable. Three factors
contribute to this problem. First, modern systems have too
many knobs. Second, most knobs take values from a large
continuous space, leading to many possible configurations.
Finally, it may take several minutes to measure how even a
single configuration performs [13, 24].

As a result, recent research has proposed auto-tuning tools
for database systems (e.g., Ottertune [1], BestConfig [24],
and CDBTune [23]). Most of these tools rely upon an initial
offline phase, which either builds a knowledge base that is
then used to bootstrap the tuning process for future workloads
(by reusing already evaluated configurations), or trains an ML



model that is used to recommend configurations during the
online tuning phase. Performing this initial profiling phase is
vital to the quality of configurations that these tools produce.
For instance, the authors of CDBTune [23] report that their
system performs better compared to search-based systems like
BestConfig, as the latter cannot find optimal configurations in
a short time without prior knowledge.

2.2 Challenges in Auto-tuning
The offline profiling (or training) phase, while crucial for
obtaining high-quality configurations, is unfortunately very
expensive. In fact, it is the most time-consuming step in the
entire pipeline of these tools, accounting for over 95% of
the total tuning time (i.e. several hours to days) [1, 23]. In
addition, this phase requires substantial hardware resources in
order to be executed in a reasonable time (multiple machines
for parallel evaluation of different configurations). Further,
this phase typically has to be re-executed for new workloads,
or when porting the database system to a different hardware.
Overall, the long running time of the offline phase and that it
has to be run many times is one of the key challenges in using
existing database auto-tuning tools in the real-world.

One approach to address this issue is to reduce the num-
ber of knobs that the auto-tuner must tune, thus reducing
the search space or the training dataset size, which in turn
cuts down the overall tuning time. However, the reduced set
must contain the most important knobs, i.e., knobs that have
the most effect on the performance; tuning irrelevant knobs
will not lead to high performance. Most prior frameworks,
however, ignore the importance of the knobs [13, 23, 24].
Some tools (e.g., OtterTune) do have an additional step in the
pipeline to filter out knobs that are redundant or do not impact
performance much [1]. However, such tools do the filter-
ing step only after performing the initial profiling phase and
observing the performance of the proposed configurations.

Given this, our primary goal in the paper is to study if it
is possible to reduce the number of knobs that auto-tuners
consider, while still yielding high performance. To realize
this goal, a few key questions must be answered. First, how
many and which knobs does one need to tune to obtain high
performance for a given workload? Second, does this set of
knobs change across workloads and hardware?

Recent research concurrent to our work has examined some
of these questions in the context of file systems [6]. Our
work focuses instead on database systems, which usually
have a more complex configuration space than file systems.
This complexity is reflected in the number and the nature of
database configuration knobs. Database systems have ~4×
more performance-related knobs compared to file systems [6]
and most knobs in databases take continuous values, while
most knobs are discrete in file systems. Therefore, while it is
possible to evaluate all configuration points for a specific file
system, this is impossible for a database [6]. Further, typically
no common knobs exist among different database systems

(in contrast, for example, knobs like block-size and inode-
size are common to many file systems) [7]. We next discuss
our study of important knobs for database systems and also
compare our findings to observations made by prior work.

3 Study Methodology
Our study methodology consists of two main phases. In
the first phase, we collect information on what performance
numerous points in the configuration space deliver. In the
second phase, we apply machine-learning methods to the
collected data points to determine the most important knobs.

3.1 Generating and Collecting the Samples
Given that the configuration space is vast, it is prohibitively
time-consuming to collect performance measurements for
every single point in the space. We thus use a sampling-
based approach. We employ a stratified sampling method
called Latin Hypercube Sampling (LHS) [18], a well-known
sampling technique used by many systems [1, 6, 13].

LHS takes as input the number of samples (N) to be gen-
erated. For each knob, LHS splits its value range into N
equal-sized intervals. Then, N samples are selected from this
space, such that each interval of any knob contains exactly
one sample in it. Thus, LHS is able to generate samples that
thoroughly and uniformly cover the configuration space. Prior
work has shown that LHS covers the space more effectively
compared to alternative techniques such as random or Monte
Carlo sampling for a given target number of samples [10, 18].

Each sample generated by LHS corresponds to a single
point in the entire configuration space. For each such point,
we arrange the system under test (e.g., Cassandra) to use
that point as its current configuration. Then, we run a target
workload (e.g., YCSB-A) and record the performance metrics
(e.g., throughput or average latency) for that point. The output
of the first phase is thus a dataset that consists of points in the
configuration space and the obtained performance metrics.

3.2 Quantifying Knob Importance
Our goal is to determine which knobs have the most effect on
performance, i.e., to find which knobs and the target metrics
(e.g., throughput, average latency) have a strong correlation.
Since our target metrics are continuous, we approach this
problem using regression.

Regression models estimate the value of a dependent vari-
able (y), given a set of independent variables (X) [15]. In our
case, the independent variables correspond to the database-
system knobs and their values, and the dependent variable(s)
to the target metric(s). For a regression model, the goodness
of its fit can be measured using the coefficient of determina-
tion, R2. R2 indicates the proportion of the variance in the
dependent variable that can be explained by the independent
variable(s) [16]. Higher values correspond to better fits; a
value of 1 implies a perfect fit. We use R2 values to evaluate



0.00 0.05 0.10 0.15 0.20 0.25 0.30
Knob Relative Importance

concurrent_reads
native_transport_max_threads
memtable_heap_space_in_mb
memtable_cleanup_threshold

compaction_throughput_mb_per_sec
concurrent_compactors
key_cache_size_in_mb
row_cache_size_in_mb

counter_cache_size_in_mb
column_index_cache_size_in_kb
commitlog_segment_size_in_mb

file_cache_size_in_mb
counter_cache_save_period
trickle_fsync_interval_in_kb

row_cache_save_period

Figure 1: YCSB-A

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Knob Relative Importance

concurrent_reads
native_transport_max_threads
memtable_heap_space_in_mb
memtable_cleanup_threshold

compaction_throughput_mb_per_sec
row_cache_size_in_mb
key_cache_size_in_mb

column_index_cache_size_in_kb
counter_cache_size_in_mb

commitlog_segment_size_in_mb
counter_cache_save_period

row_cache_save_period
trickle_fsync_interval_in_kb

key_cache_save_period
concurrent_compactors

Figure 2: YCSB-B
Most important Cassandra knobs for YCSB-A and YCSB-B for throughput from 25K samples (top 15 knobs).

how well a model that is fitted using a smaller subset of knobs
performs, compared to the one that is fitted on all knobs.

In order to quantify the importance of each knob, we use
an ensemble of regression trees (i.e., random forest). Tree en-
sembles are generally more resistant to noise and overfit less
than a single tree [4]. Regression trees are non-parametric
regression models that utilize variance-based metrics to se-
lect which knobs will be included in each tree node. We use
the classification and regression trees (CART) [5] algorithm,
which quantifies the importance of a knob based on the re-
duction in variance of the target metric (dependent variable).
CART builds the tree by greedily selecting the “best” knob
(i.e., one that reduces variance significantly) for each node
in a top-down fashion. Since our random forest consists of
many trees where each tree is fitted on a random subset of
samples, the “importance score” is averaged across all trees.

Random forests are an appropriate choice for our approach
as they capture non-linear relationship among variables, are in-
terpretable, and can be trained fast. Other popular alternatives,
for example, linear regression, can provide interpretability
but fall short on capturing non-linear relationships. More
sophisticated models, e.g., neural networks, can capture com-
plex relationships, but are expensive to train and usually are
a black-box thus undermining interpretability. Due to their
hierarchical structure, random forests are also able to capture
variable (knob) interaction effects [21]. Therefore, we do
not need to explicitly include interaction terms in the set of
independent variables, as with other regression methods (e.g.
linear regression with polynomials). However, while it is not
easy to identify or examine the importance of a specific inter-
action between two (or more) knobs, the interaction factors
are included in the importance score of the individual knobs.
Thus, if a strong interaction exists between two knobs, then
the model will give high importance score to each of them.
If they eventually get included in the set of important knobs,
their interaction will be accounted for during the tuning phase.

Before fitting the data we perform two pre-processing steps.
We first transform all categorical knobs into dummy variables.
Since the number of categorical knobs is small (2 each for
the two database systems we analyzed), the number of knobs
remains manageable. Second, we standardize the knob values
(i.e., scale to zero mean, unit variance). This ensures that
our regression model is not influenced by the different range

of values of each individual knob. At the end of the second
phase, using the regression models, we can arrive at the set of
important knobs and quantify their relative importance.

4 Analysis
We now present our analysis to answers the questions posed.
We start by describing our experimental setup.

4.1 Experimental Setup
Target Systems and Workloads. We study Cassandra
(v3.11) [2], a NoSQL store, using the YCSB-A workload
from the YCSB suite [11]. This workload is write-heavy with
50% reads and 50% writes. We first determine the impor-
tant knobs for this workload (§4.2). Then, to study if the
important knobs change with workloads, we study Cassandra
using YCSB-B, a read-heavy workload with 95% reads and
5% writes (§4.3). Finally, to see if the results hold across
systems, we study PostgreSQL v9.6, a relational database,
using the same workloads (§4.4).
Sample Generation and Collection. The total number of
knobs for Cassandra is 155, and for Postgres 169. We gen-
erate 25K samples in the configuration space per system.
These samples are obtained by tweaking 30 performance-
related knobs for Cassandra, and 29 for PostgreSQL. We
hand-picked these knobs by consulting the documentation
and prior works [1, 23]. Each of the authors independently ex-
amined all knobs and created a set of knobs that they believed
would have some measurable impact on system performance.
The final set of knobs is the union of the three individual sets.
It is worth noting that tweaking all knobs would have led to
much smaller coverage of the configuration space, due to rela-
tive small number of samples generated by LHS compared to
the entire configuration space. This might have led to insuffi-
cient data for our machine-learning model. In general, we do
not expect large deviations for the top-10 (or top-20) knobs,
when considering all knobs. Before running the workload, we
initialize the system under test with a single table with 18 mil-
lion tuples. We then run the workload with 50 client threads.
For each experiment (configuration), we run the workload for
five minutes and record the overall throughput and the read-
and write-latency statistics at the end. Our client-threads
setting is similar to those used in prior work [1, 23].



Apache Cassandra PostgreSQL
Best configuration Throughput Read latency Write latency Throughput Read latency Write latency
(samples, knobs) (ops/sec) (usecs) (usecs) (ops/sec) (usecs) (usecs)
Baseline (25K, 30) 74780.33 744.34 302.82 14134.34 907.37 4219.44
Validation (4K, Top-5) 74304.42 750.56 307.08 14006.90 967.52 4238.93

% of Baseline 99.36% 100.84% 101.41% 99.10% 106.63% 100.46%

Table 1: Performance when evaluating database with fewer samples that modify fewer important knobs, for workload YCSB-A.

0

0.2

0.4

0.6

0.8

1

R
-s

q
u

a
re

d

Increasingly Larget Set of Important Knobs

Random Forest (Important Knobs) Random Forest (30 Knobs)

Figure 3: Baseline model performance (30 knobs – red dotted
line) vs. increasingly larger sets of top knobs (blue line).

We parallelize sample collection using 30 machines, with
each machine running one experiment at a time. All machines
have identical hardware specifications, run Linux v4.15, and
are a part of the CloudLab infrastructure [14]. We run the
database system and the YCSB clients on the same physical
machine but isolate them on separate CPUs (each machine has
two CPUs). On each machine, the database system runs on a
10-core Intel Xeon Silver 4114 CPU with 64 GB of memory
and uses a 480-GB SSD for storage. Running each experiment
takes ∼ 9 minutes, and thus collecting 25K samples for a
single system-workload pair requires approximately 3750
node-hours (or a bit over 5 days when using 30 nodes).
Analysis. We use the Python’s scikit-learn implementation of
random forest (RF) for our regression model, which uses the
CART algorithm. We initialize each RF with 300 trees, which
lies inside the range of values (i.e. [128,512]) that is shown
to provide a good trade-off between model performance and
training time [19]. Training the model on the collected 25K
samples takes under a minute on a single machine.

4.2 How Many Knobs Matter?
We analyze the samples to find the important knobs for ob-
taining high throughput for YCSB-A in Cassandra. Figure 1
shows the ranking of knobs and their relative importance. The
key result is that the top five knobs are much more important
than the other ones. This importance reflects the amount of
reduction in variance of our target metric (i.e., throughput).

From our regression model, the most important knob is
concurrent_reads, which determines the number of si-
multaneous read operations that can be performed. We
believe one reason this knob ranks high is because reads
are more expensive than writes in Cassandra since most

reads need to go to disk [3]. Thus, increasing this knob’s
value allows many reads to be concurrently issued, allow-
ing the drive to batch and (if necessary) reorder the requests,
leading to higher throughput. The next important knob is
native_transport_max_threads which is the maximum
number of threads used to handle requests; with higher values,
many threads can handle many concurrent client requests,
improving throughput. The next three knobs determine the
amount of memory allocated to the memtable, what percent-
age of this space can be filled before flushing to disk, and
the rate at which new SSTables are written. More analysis is
needed to explain why these knobs are ranked high.

Next, we use this ranking to fit our regression model with
increasingly larger sets of the most important knobs (Figure 3).
The baseline model is fitted on all 30 knobs, and can explain
∼ 90% of the variance (the red dotted line). We observe that
a model fitted with just the most important knob is able to
capture ∼ 50% of the throughput variance. Including the
second knob raises this value to ∼ 65%. We continue to see
improvements for the first five knobs, after which we see little
or no improvements. The slight performance improvement of
models fitted with fewer knobs over the baseline is because of
overfitting, which occurs due to the large number of input fea-
tures (knobs). Thus, we hypothesize that tuning as few as five
knobs might be enough to reach almost the same performance
obtained by the best among the 25K configurations.

In order to validate this hypothesis, we generate a separate
set of 4K samples but by modifying only the values of the
five most important knobs; the remaining ones are assigned
their default values. We measure the performance of these
configurations for YCSB-A and Table 1 shows the results for
three target metrics: throughput, average read latency, and
average write latency. We observe that just by tuning the five
most important knobs, we are able to reach almost the same
level of performance (for all three metrics) obtained by the
best configuration in the 25K samples. Prior work [6] has
also done analysis that suggests that only a few knobs are
important for performance in file systems. We find this also to
be true for databases and we also use experiments to validate
that just tuning five important knobs can be sufficient.

Summary and Implications. Tuning just a few most impor-
tant knobs can yield high performance. Based on this result,
we believe the tuning time of existing auto-tuners can be
significantly reduced by pre-filtering such important knobs.



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Knob Relative Importance

default_statistics_target
fsync

shared_buffers
wal_sync_method

commit_delay
work_mem

effective_io_concurrency
wal_buffers

max_parallel_workers_per_gather
temp_buffers

backend_flush_after
bgwriter_flush_after
effective_cache_size

wal_writer_delay
wal_writer_flush_after

Figure 4: YCSB-A

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Knob Relative Importance

fsync
wal_sync_method

shared_buffers
backend_flush_after

default_statistics_target
commit_delay

work_mem
wal_buffers

effective_io_concurrency
temp_buffers

max_parallel_workers_per_gather
bgwriter_flush_after
effective_cache_size

max_wal_size
maintenance_work_mem

Figure 5: YCSB-B
Most important PostgreSQL knobs for YCSB-A and YCSB-B for throughput from 25K samples (top 15 knobs).

4.3 Do Similar Results Hold for a Different Workload?
We next conduct a similar analysis for YCSB-B and Figure 2
shows the most important knobs that impact throughput in
Cassandra. We observe that a few knobs (∼ 5) are more
important than others, providing more evidence to our hy-
pothesis that only a few knobs affect performance the most.
We observe that concurrent_reads is ranked again as the
most important knob, and with a greater score (than in YCSB-
A); this is because YCSB-B is a read-heavy workload and
thus increasing the concurrency in reads has even more effect.

More interestingly, we see that the five most important
knobs exactly match the ones for YCSB-A. We believe the
reason for this is that the top five knobs for YCSB-A were all
important for improving read performance (writes are anyway
cheaper than reads in Cassandra [3]); as a result, the model
ranks the same knobs high for a read-heavy workload.

From the above preliminary observation, we believe that
it might be possible (at least across some workloads) to find
the important knobs once for one workload and tune the same
knobs to obtain high performance for a different workload.
While this seems to be true for improving throughput in Cas-
sandra across YCSB-A and YCSB-B, we anticipate that we
may not get such an exact overlap across very different work-
loads (read-only vs. write-only) or if we consider a different
metric (e.g., write latency.) In such cases, although there is no
exact overlap, we think it might be possible to take a larger
set of knobs from one workload (say 15) and analyze if tuning
them alone leads to high performance for a different workload.
We believe this is an interesting avenue for future work.
Summary and Implications. Our hypothesis that only a few
knobs impact performance significantly seems to hold for a
different workload. We also note that across some workloads,
there is a significant overlap of important knobs. Based on
this, we believe it might be possible to find the important
knobs once and tune the same or a slightly larger set of knobs
to achieve high performance for a different workload.

4.4 Do Results Hold across Database Systems?
We now turn our focus to PostgreSQL to check if our findings
hold true for a different system. For YCSB-A (Figure 4), sim-
ilar to Cassandra, we observe that a handful of knobs are most
important. Among them, default_statistics_target is

the most important one; we observe that higher values for this
knob collects highly accurate table statistics for query opti-
mization but hurts performance; lower values lead to higher
performance. fsync enables or disables forced writes to stor-
age; given that 50% operations are writes in YCSB-A, this
knob has a large effect and thus is ranked high.

We also ran a similar experiment as in §4.2 to find how
close can we get to the performance achieved by the best sam-
ple. We generate 4K samples by modifying only the five most
important knobs and measure the performance (Table 1). We
again notice the we can closely approximate the performance
of the best configuration, by only modifying five knobs.

We also run PostgreSQL with YCSB-B and plot the most
important knobs in Figure 5. Even though YCSB-B has 95%
reads, we find that the most important knob is fsync and the
second most important knob is wal_sync_method. Looking
more closely at our data, we find that configurations with
fsync off typically have around 30%-80% higher throughput
than those with fsync on. We believe that this behavior
happens because PostgreSQL tries to serialize read and write
operations to the same key and YCSB-B uses a Zipfian key
distribution. We hope to perform additional investigation in
the future to isolate and explain this behavior.
Summary and Implications. Our observation that only tun-
ing a handful of knobs is sufficient generalizes to other sys-
tems like PostgreSQL across multiple workloads.

5 Towards Faster Database Tuning
Our preliminary study shows that only a few knobs have the
most effect on performance. Thus, we argue that the tuning
time of existing tuners can be significantly reduced if impor-
tant knobs are identified before running the tuner. We propose
a two-level design where we first run a pre-selection step
that only identifies the important knobs (but not their optimal
values). After that, we reuse existing tuners to determine
the optimal values for the knobs. Our key insight is that fil-
tering cuts down the search space or the training dataset of
existing tuners, thus reducing the tuning time. For example,
we consider an existing tuner, BestConfig with Cassandra on
YCSB-A. We observe that when tuning only the top-5 knobs,
BestConfig manages to reach the best performance using 5×
fewer iterations, compared to when tuning all 30 knobs.



Model Performance Knobs Set Similarity w.r.t. 25K samples

Figure 6: Model performance and top-5 knobs similarity
when model is fitted with less samples (Cassandra YCSB-A).

However, as we described in §4, our current analysis uses
~25K samples. While finding the important knobs from such
a large data set makes our analysis robust, it comes at a cost:
the time it takes to collect the samples. Each sample in our
dataset is run with a specific configuration and workload for
five minutes. Thus, collecting the samples is time-consuming,
even with several machines running in parallel. Using the
same method to optimize existing tuners would not result in
dramatic improvements in tuning time.

One way to expedite this process is to examine if we can
arrive at the same results (i.e., the same knobs) with fewer
samples. We conducted an experiment to study this question
and our initial results are shown in Figure 6. We compare the
similarity score (intersection-over-union index [17]) of the
top-5 important knobs and R2 obtained when using random
subsets of samples against that of the baseline (25K samples).
As shown, although the R2 scores go down as we reduce the
sample-set size, even with 64× fewer samples, we obtain the
same important knobs (i.e., a similarity score of 1). Therefore,
instead of using 3750 node-hours (25K samples) to collect
samples, we would use ∼ 60 node-hours (400 samples). As-
suming that the set of top-5 (or top-10) knobs remains the
same across workloads, this could also reduce the need to
execute experiments with many workloads beforehand (as it
is the case with existing tuners [1, 23]). We believe more
analysis is needed to determine how far we can reduce the
sample-set size while being able to find the important knobs
for different workloads and systems.

Another question that needs to be addressed is how many
knobs should the pre-selection step output. One way to pick
this would be to see how many knobs are required to get a
good fit i.e., a target R2 score. Another way is to consider
the time budget for tuning. Given a time budget, there are
many ways to split it between the two phases: a) identifying
important knobs, and b) determining the optimal values for
these knobs. If the pre-selection step outputs more knobs,
it is inevitable that more time is needed by the tuner for ex-
ploration to come up with an optimal configuration. Hence,
if we can only run the tuner for a short duration, then it is
imperative that the pre-selection step produces fewer knobs.

A completely different approach is to use white-box knowl-
edge of the target system to determine which knobs could
have the greatest impact. We plan to investigate a number of

avenues including techniques to parse comments or using pro-
filing tools to detect which knob affects performance the most.
We believe that latent information present in the code can be
useful for selecting important knobs. We believe investigating
these approaches can make the pre-selection step faster while
finding configurations that provide high performance.

6 Conclusion
In this paper we studied the question of how many knobs
do we need to tune to achieve good performance in database
systems. Our results indicate that tuning a handful of knobs is
good enough and that this trend holds across workloads and
database systems. Based on this we proposed an initial design
to accelerate auto-tuning frameworks and we outlined some
research challenges that need to be addressed to realize this.

Discussion Topics
Studying the role of hardware. In this paper, we used a sin-
gle hardware setup. Given that cloud platforms offer a variety
of hardware choices, we believe it is interesting to study if
the important knobs vary across different hardware configu-
rations. The models maintained by existing learning-based
tuners need to be retrained if the target hardware changes;
specifically, new training samples for the new hardware con-
figuration must be obtained [23]. We believe by studying how
sensitive the important knobs are to the hardware, we could
potentially avoid retraining for new platforms.
Optimizing for composite metrics. In our analysis, we
aimed to optimize one metric (such as throughput or aver-
age latency) at a time. While this is a first good step, we
expect that some deployments might want to optimize for
composite metrics. For example, practitioners may want to
improve the overall throughput while keeping the operation
latencies within a bound. We believe it will be interesting to
study if and how the set of important knobs changes when
optimizing for composite metrics.
Reliability-aware tuning. Most existing auto tuners aim to
find the configuration that provides the highest performance
possible. In this pursuit, these tools often compromise on
reliability; for example, they may turn off fsync, leading to
better performance but significantly higher possibility of data
loss. We consider this a serious limitation in existing tuners
and propose that methods to find the important knobs must
also take the target reliability metrics into account.

Acknowledgements
We would like to thank the anonymous reviewers and our
shepherd Vasiliki Kalavri for their insightful comments that
improved this paper. This work is supported by the National
Science Foundation grant CNS-1838733, a Facebook fac-
ulty research award and by the Office of the Vice Chancellor
for Research and Graduate Education at UW-Madison with
funding from the Wisconsin Alumni Research Foundation.



References
[1] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon,

and Bohan Zhang. Automatic Database Management
System Tuning Through Large-scale Machine Learning.
In Proceedings of the 2017 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’17),
Chicago, IL, May 2017.

[2] Apache. Cassandra. http://cassandra.apache.org/.

[3] Apache Cassandra. http://cassandra.apache.org/

doc/latest/configuration/cassandra_config_file.

html#concurrent-reads.

[4] Leo Breiman. Random forests. Machine learning,
45(1):5–32, 2001.

[5] Leo Breiman, Jerome Friedman, Charles J Stone, and
Richard A Olshen. Classification and regression trees.
CRC press, 1984.

[6] Zhen Cao, Geoff Kuenning, and Erez Zadok. Carver:
Finding Important Parameters for Storage System Tun-
ing. In Proceedings of the 18th USENIX Conference on
File and Storage Technologies (FAST ’20), Santa Clara,
CA, February 2020.

[7] Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez
Zadok. Towards better understanding of black-box
auto-tuning: A comparative analysis for storage sys-
tems. In 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18), pages 893–907, 2018.

[8] Surajit Chaudhuri and Vivek Narasayya. Index Se-
lection Tool for Microsoft SQL Server. In Proceed-
ings of the 23rd International Conference on Very Large
Databases (VLDB 23), Athens, Greece, August 1997.

[9] Surajit Chaudhuri and Vivek Narasayya. Self-tuning
Database Systems: A Decade of Progress. In Pro-
ceedings of the 33rd International Conference on Very
Large Databases (VLDB 33), Vienna, Austria, Septem-
ber 2007.

[10] Liu Chu, Eduardo Souza de Cursi, Abdelkhalak El
Hami, and Mohamed Eid. Reliability based optimiza-
tion with metaheuristic algorithms and latin hypercube
sampling based surrogate models. 2015.

[11] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the
ACM Symposium on Cloud Computing (SOCC ’10), In-
dianapolis, IA, June 2010.

[12] Karl Dias, Mark Ramacher, Uri Shaft, Venkateshwaran
Venkataramani, and Graham Wood. Automatic Perfor-
mance Diagnosis and Tuning in Oracle. In Proceedings

of the 2nd Conference on Innovative Data Systems Re-
search (CIDR 2005), Asilomar, CA, January 2005.

[13] Songyun Duan, Vamsidhar Thummala, and Shivnath
Babu. Tuning database configuration parameters
with ituned. Proceedings of the VLDB Endowment,
2(1):1246–1257, 2009.

[14] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design and
operation of CloudLab. In Proceedings of the USENIX
Annual Technical Conference (ATC), pages 1–14, July
2019.

[15] David A Freedman. Statistical models: theory and
practice. cambridge university press, 2009.

[16] Stanton A Glantz, Bryan K Slinker, and Torsten B Nei-
lands. Primer of applied regression and analysis of
variance, volume 309. McGraw-Hill New York, 1990.

[17] Michael Levandowsky and David Winter. Distance
between sets. Nature, 234(5323):34–35, 1971.

[18] Michael D McKay, Richard J Beckman, and William J
Conover. Comparison of three methods for selecting
values of input variables in the analysis of output from
a computer code. Technometrics, 21(2):239–245, 1979.

[19] Thais Mayumi Oshiro, Pedro Santoro Perez, and
José Augusto Baranauskas. How many trees in a ran-
dom forest? In International workshop on machine
learning and data mining in pattern recognition, pages
154–168. Springer, 2012.

[20] Adam J Storm, Christian Garcia-Arellano, Sam S Light-
stone, Yixin Diao, and Maheswaran Surendra. Adaptive
Self-tuning Memory in DB2. In Proceedings of the
32nd International Conference on Very Large Databases
(VLDB 32), Seoul, Korea, September 2006.

[21] Clifton D Sutton. Classification and regression trees,
bagging, and boosting. Handbook of statistics, 24:303–
329, 2005.

[22] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou,
Shankar Pasupathy, and Rukma Talwadker. Hey, you
have given me too many knobs!: Understanding and
dealing with over-designed configuration in system soft-
ware. In Proceedings of the Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE ’15), Bergamo, Italy, August
2015.

http://cassandra.apache.org/
http://cassandra.apache.org/doc/latest/configuration/cassandra_config_file.html#concurrent-reads
http://cassandra.apache.org/doc/latest/configuration/cassandra_config_file.html#concurrent-reads
http://cassandra.apache.org/doc/latest/configuration/cassandra_config_file.html#concurrent-reads


[23] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin
Cheng, Jiashu Xing, Yangtao Wang, Tianheng Cheng,
Li Liu, Minwei Ran, and Zekang Li. An End-to-End
Automatic Cloud Database Tuning System Using Deep
Reinforcement Learning. In Proceedings of the 2019
ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD ’19), Amsterdam, Netherlands,
July 2019.

[24] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang
Bao, Wenlong Ma, Zhuoyue Liu, Kunpeng Song, and
Yingchun Yang. BestConfig: Tapping the Performance
Potential of Systems via Automatic Configuration Tun-
ing. In Proceedings of the ACM Symposium on Cloud
Computing (SOCC ’17), Santa Clara, CA, September
2017.


	Introduction
	Background and Motivation
	Automatically Tuning Database Systems
	Challenges in Auto-tuning

	Study Methodology
	Generating and Collecting the Samples
	Quantifying Knob Importance

	Analysis
	Experimental Setup
	How Many Knobs Matter?
	Do Similar Results Hold for a Different Workload?
	Do Results Hold across Database Systems?

	Towards Faster Database Tuning
	Conclusion

