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Abstract. We introduce IONIA, a novel replication protocol tai-
lored for modern SSD-based write-optimized key-value (WO-
KV) stores. Unlike existing replication approaches, IONIA

carefully exploits the unique characteristics of SSD-based
WO-KV stores. First, it exploits their interface characteris-
tics to defer parallel execution to the background, enabling
high-throughput yet one round trip (RTT) writes. IONIA also
exploits SSD-based KV-stores’ performance characteristics
to scalably read at any replica without enforcing writes to
all replicas, thus providing scalability without compromising
write availability; further, it does so while completing most
reads in 1RTT. IONIA is the first protocol to achieve these
properties, and it does so through its storage-aware design.
We evaluate IONIA extensively to show that it achieves the
above properties under a variety of workloads.

1 Introduction
Key-value stores play a central role in datacenter applications.
Today, many KV stores such as LevelDB [31], RocksDB [26],
Cassandra [2] and others [8, 15, 62, 64] are built using write-
optimized indexes (WOIs) such as LSMs [58]. We refer to
these stores as WO-KV stores. WO-KV stores have become
a popular choice because they offer significantly higher write
performance than B-tree stores [9, 62]. Further, recent WO-
KV stores are optimized for modern SSDs, and can extract
their high bandwidth and offer low latencies [73].

As KV stores are increasingly deployed in datacenters, mak-
ing them fault tolerant is critical. A common way to achieve
this goal today is to replicate the store on many machines and
use off-the-shelf replication protocols like MultiPaxos [43],
Raft [56], or Viewstamped Replication (VR) [46] to coordi-
nate writes and reads to the store. For example, ZippyDB at
Meta [65, 68] uses MultiPaxos to replicate RocksDB. Several
other systems use a similar layered design [11, 20, 21, 47].

Unfortunately, however, using off-the-shelf protocols to
replicate modern WO-KV stores squanders their high write
performance (§2). These protocols offer low write through-
put because they must apply writes sequentially on a single
thread to ensure that the replicas are identical [66]. They
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also incur high latencies because replicas must coordinate
to agree on the order of writes. Although many prior proto-
cols [13, 37, 42] have been proposed to safely apply writes
on multiple threads for high throughput, they incur high laten-
cies. At the same time, many prior approaches [28, 44, 59, 61]
that achieve low-latency writes suffer from low throughput.
Existing replication approaches thus cannot preserve the high
write performance of WO-KV stores.

Off-the-shelf protocols also lead to poor read performance.
For strong consistency, these protocols restrict reads to a des-
ignated replica called the leader [38, 52, 55]. Thus, the read
bandwidth of the followers goes unused. This is particularly
bad for WO-KV stores because of their read-write asymme-
try [9]: reads are more expensive than writes and thus perfor-
mance drops with more reads. As a result, serving all reads
at the leader pushes it to a less performant regime, impairing
overall throughput. Many prior protocols have devised ways
to scalably read from followers. However, as we discuss (§2),
many of them suffer from high latencies [11, 74]; others that
offer low latencies do so by (regrettably) trading off write
availability and slowness tolerance [14, 27, 39, 70].

An ideal protocol must preserve the high write performance
of WO-KV stores, offering high throughput and low latency.
It must also safely (i.e., with consistency) scale reads while
offering low-latency reads without impacting availability. We
observe that a main reason why existing approaches do not
achieve these ideal properties is that they are largely oblivious
of the underlying SSD-based WO-KV store’s characteristics.

In this paper, we design IONIA, a novel replication protocol
that carefully exploits the interface and performance char-
acteristics of the underlying SSD-based WO-KV store. We
show that such careful storage-aware design enables IONIA

to achieve high-throughput, 1RTT writes, and scalable, 1RTT
reads without impacting availability (§3).

IONIA avoids the high latency of writes inherent in prior
parallel-execution protocols [13, 37, 42] by exploiting the
interface atrributes of WO-KV stores, improving the write
path. In particular, WO-KV stores convert all writes into blind
writes to avoid performing a slow read before a write. Con-
sequently, they do not return an execution result but only an
acknowledgment to clients when writes complete; i.e., the
update interfaces in WO-KV stores are nil-externalizing, a
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property we identify in our prior work on Skyros [28]. Thus,
similar to Skyros, IONIA needs to only guarantee durability
when writes complete, which can be achieved in 1RTT with-
out coordination. IONIA then defers ordering and parallel
execution to the background, achieving both high-throughput
and 1RTT writes.

IONIA’s main novelty is its scalable, 1RTT read path. We
first observe that existing low-latency, scalable read proto-
cols conflate scalability and locality due to their focus on
in-memory stores. Locality means that reads can be locally
served by any replica without additional messages to other
replicas. This conflation, however, compromises write avail-
ability and slowness tolerance: because clients must be able
to locally read at any replica, writes are replicated to all repli-
cas (not just a quorum). Locality is a necessary condition for
scalability for in-memory stores, where network messages
are the bottleneck. In contrast, we realize that for SSD-based
stores, scalability can be decoupled from locality: because
SSD is the bottleneck (instead of network), even non-local
reads that send additional messages won’t impact scalability
as long as these additional messages access only in-memory
state (not the SSD) on other replicas.

Based on this insight, IONIA replicates only to a quorum
for availability while allowing reads from any replica. Then,
to handle lagging followers, for every follower read, IONIA

performs a check (which we call a meta query) at the leader
to validate the result returned by the follower. However, this
approach can still scale because the leader serves meta queries
from memory at high throughput. Overall, compared to prior
protocols that focus on in-memory stores, IONIA exploits the
performance gap between SSDs and DRAM to decouple scal-
ability from locality, achieving scalable reads.

Second, while the meta-query approach offers scalability,
it in itself does not offer 1RTT reads, a requirement for mod-
ern SSD-based stores that offer low latencies. To achieve
1RTT reads, IONIA sends the read to a follower and the meta
query to the leader in parallel. However, a challenge is that,
since the requests are concurrent, the leader cannot directly
indicate to the client whether or not the follower’s result is
up-to-date. To solve this problem, IONIA proposes a client-
side consistency-check mechanism, where the leader returns
enough information about the key being read and the client
makes the decision about the freshness of the follower’s result.

We have designed and implemented IONIA (§4). A main
challenge in our design is to ensure that meta queries can
always be served from the leader’s memory. IONIA addresses
this by maintaining a compact history of recently modified
keys instead of all keys in the store. A related challenge is
how to ensure that the leader returns the correct information
for meta queries for keys not present in the history. IONIA

solves this problem by returning slightly inaccurate informa-
tion for such keys but without endangering consistency. We
have model checked IONIA to show its correctness.

Our evaluation (§5) shows that for writes, IONIA matches

the throughput of parallel-execution protocols while offering
the low-latency of Skyros; IONIA also approximates the perfor-
mance of an unreplicated server. For reads, IONIA offers linear
scaling, saturating the read bandwidth of all replicas without
meta queries becoming the bottleneck. With mixed workloads,
IONIA offers 1.8× higher throughput than IONIA-LR (a variant
where reads are restricted to leader). We show that most reads
finish in 1RTT and that this is achieved with small histories
(e.g., 50MB). With YCSB [19], IONIA improves throughput
by 16× to 38× over MultiPaxos.
This paper makes three contributions.
• We first show how designing a replication protocol by pay-

ing attention to the underlying SSD-based WO-KV store
layer yields desirable properties.

• Second, we present novel ideas such as decoupling scalabil-
ity from locality and client-side consistency checks, which
enable IONIA to achieve scalable and low-latency reads
without compromising availability or slowness tolerance.

• Finally, we present a thorough experimental evaluation,
showing IONIA’s benefits.

2 Background and Motivation
We provide background on WO-KV stores and building repli-
cated KV stores. We discuss why existing protocols are insuf-
ficient for WO-KV stores, leading to undesirable properties.

2.1 WO-KV Stores Background
KV stores are implemented using a disk-based index structure.
Stores built using B-tree or its variants [57] are a poor fit for
write-intensive workloads because writes in B-trees require
random IO, which is significantly slower than sequential IO.
As a result, modern KV stores have turned towards write-
optimized indexes (WOI) such as LSMs [58] or Bε-trees [12].
WOIs offer higher write throughput than B-trees because they
batch writes and sequentially transfer large batches to disk,
amortizing IO cost [9]. Today, many local KV stores including
LevelDB [31], RocksDB [26], and several others [60, 62, 64,
73] are built atop WOIs. WO-KV stores are also used as
storage engines in distributed systems like BigTable [15],
Cassandra [2], and CockroachDB [17].
Read-Write Asymmetry. In B-trees, both writes and reads
require random IO and thus both are limited by device’s ran-
dom IOPS [9]. WOIs provide the same read performance as
B-trees [9] and are limited by random IOPS. However, writes
in WOIs are limited by sequential bandwidth. Consequently,
WOIs have a read-write asymmetry in performance: writes in
WOIs are much faster than reads.

An important implication of this asymmetry is that KV
stores built using WOIs avoid query-before-update [9]; is-
suing a query before an update squanders the benefits of
WOIs, essentially making WOIs behave like B-trees. As a
result, WO-KV stores convert all writes into blind writes.
For example, a put simply absorbs a write to a key without
checking if the key is already present since the check would
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Figure 1: Off-the-Shelf Replication. The figure shows how writes and
reads are processed in replicated stores built using off-the-shelf protocols.

require a (slow) read [50]. Similarly, a delete blindly inserts
a tombstone without checking for key presence [67]. Even
read-modify-writes (RMW) are transformed into blind up-
serts [9]; as an example, RocksDB implements upserts using
merge [25]. An upsert encodes a RMW by specifying a key
k and a function f that changes the value of k. k and f are
then blindly recorded; the value is evaluated later only when
needed (e.g., on a read). This, in turn, means that when writes
complete, WO-KV stores do not reveal system state to the
clients [28]: they do not return an execution result or execu-
tion error (e.g., to indicate key presence or absence) but only
an acknowledgment. Our prior work calls such updates nil-
externalizing or nilext [28]. Note that while a nilext interface
does not return execution errors, it can still return validation
errors (e.g., malformed requests, unreachable server).

2.2 Consistent Replicated KV Stores Background
A common way to build a strongly consistent replicated KV
store is to layer an off-the-shelf replication protocol like Mul-
tiPaxos atop the local KV store. Many systems [11, 20, 21, 47]
including Meta’s ZippyDB [65, 68] use such a layered design.

Figure 1 shows how writes and reads are processed in a
replicated KV store built using off-the-shelf replication proto-
cols such as MultiPaxos (or Raft [56] or VR [46]). As shown,
clients submit writes to the leader, which orders the requests
by appending them to its consensus log; the leader then sends
the request to the followers. The followers append to their
logs and respond. Once a majority has agreed to the order, the
leader applies the writes to the KV store and returns the result.
Asynchronously, the leader sends a commit, upon which all
followers apply the ordered writes. All replicas apply writes
sequentially on a single thread to avoid non-determinism. Ap-
plying writes on multiple threads is non-deterministic [42]:
replicas may apply writes in different orders, causing the KV
store state across replicas to diverge.

Because followers could be lagging and thus could return
stale data, off-the-shelf protocols allow reads only at the leader
to ensure strong consistency [38, 48, 52, 55]. To prevent a
deposed old leader from serving stale data, these protocols
employ leader leases [38, 46], which ensures that a new leader
is elected only after the old leader’s lease has expired.

2.3 Why Are Existing Protocols Insufficient?
We first explain the drawbacks of off-the-shelf protocols to
replicate SSD-based WO-KV stores. Prior work has built
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1RTT × ×
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Table 1: Existing Approaches. The table compares different existing
approaches. ∆: waiting delay for bigger batches (in parallel execution) or
followers to catch up (in Gaios); *: CRAQ builds upon chain replication [71]
which incurs O(n) RTTs for writes; n: number of replicas.

optimized protocols to improve over off-the-shelf replication.
However, as we discuss, these protocols are still not the ideal
choice for SSD-based WO-KV stores, leaving a huge room
for improvement in performance and availability.

We will use an unreplicated server as a baseline to show
the drawbacks of existing protocols. As shown in Table 1
(first row), an unreplicated server offers low latency for writes
and reads because clients can submit a request to the server
and get a response in 1RTT. The unreplicated server can also
offer high throughput because it can safely apply writes on
multiple threads. However, the unreplicated server has an
obvious problem: it cannot tolerate server failure or slowness.
Further, read performance is limited by the single server.

An ideal system must tolerate failures and slowness while
matching the unreplicated server’s latency and write through-
put. It must also scale read performance with replicas.

2.3.1 Off-the-Shelf Protocols are Ill-Suited for WO-KV
Off-the-shelf protocols like MultiPaxos tolerate failures and
slowness (Table 1 second row). However, these protocols of-
fer significantly lower throughput than an unreplicated server
because they must apply writes sequentially on a single thread
to avoid non-determinism. Modern WO-KV stores, how-
ever, are optimized for multi-core CPUs and SSDs [18, 26],
where ingesting data using many threads is necessary for
high throughput. These protocols also incur high latencies
for writes because the replicas must coordinate to order the
writes in the critical path. Specifically, writes incur 2RTTs
(client→leader→followers→leader→client), doubling the la-
tency of an unreplicated server (client→server→client). Mod-
ern WO-KV stores offer low latencies [18] and thus latency
from additional RTTs is undesirable. As we soon show, such
eager coordination is, in fact, unnecessary for WO-KV stores.

Off-the-shelf protocols restrict reads to the leader. Because
the leader sees all writes, with leader leases [46], reads are
guaranteed to see the latest data, completing them in 1RTT.
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However, this means that reads cannot scale with replicas.
Restricting reads to the leader also reduces overall throughput
because reads contend with writes. This is particularly bad
for WO-KV stores because of read-write asymmetry, where
performance drops with more reads. If the leader processes
both reads and writes, the ratio of reads to writes will be
higher than a system that splits the read load across replicas.
Since WO-KV stores offer lower performance with more
reads, the leader will operate at a lower throughput regime
than a system that spreads reads. Since the leader’s throughput
is the bottleneck, the overall performance suffers.

2.3.2 Shortcomings of Existing Improvements
We now discuss the vast body of work that has attempted
to improve the write and read performance of off-the-shelf
protocols. We discuss their shortcomings and argue why they
are not a great fit for replicating WO-KV stores.
High-Throughput Or Low-Latency Writes. As we dis-
cussed, applying writes on multiple threads is essential to
realizing high throughput in modern WO-KV stores. Fortu-
nately, prior protocols such as CBASE [42], Eve [37], and
others [1, 13, 24] (third row) have shown how to leverage
multi-threaded execution in replicated systems while avoiding
inconsistencies. For correctness, these protocols concurrently
execute only non-conflicting writes; conflicting writes are
serialized and applied in the same order across all replicas.
Thus, these protocols can offer high write throughput and
could serve as a good base for replicating WO-KV stores.
Unfortunately, however, these protocols incur high latencies
similar to off-the-shelf protocols. In fact, the latency can be
higher than off-the-shelf protocols because these protocols
must create bigger batches to find opportunities to concur-
rently apply many writes. While prior protocols have pro-
posed techniques for low-latency writes by exploiting com-
mutativity [44, 53, 59], speculation [41, 61], network order-
ing [45], and interface semantics [28] (fourth row), these pro-
tocols apply writes sequentially and thus suffer from low
throughput. Existing protocols to improve write performance
thus either suffer from high latencies or low throughput.
Scalable Reads: Write Availability Or Low Latency. Prior
work has proposed ways to scale reads by allowing reads at
all replicas. The main challenge these protocols must solve is
to ensure that a read from a replica returns the most up-to-date
data; a stale read will violate strong consistency [33].

Systems like Gaios [11] and Gnothi [74] (fifth row) ensure
consistency by routing all reads to the leader; the leader then
dispatches the read to a follower. The follower next waits until
it has caught up with the leader before serving the read. While
this approach scales reads, it incurs several RTTs and waiting
delay. This was acceptable for spinning disks where disk
latency was much higher than RTTs. However, for modern
SSD-based WO-KV stores, incurring multiple RTTs increases
latency considerably compared to an unreplicated server.

A few protocols [14, 27, 30, 39, 70] achieve scalability
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Figure 2: Read-Write Asymmetry. The figure shows how performance
decreases with more reads in WO-KV stores.

while offering 1RTT reads (sixth row). These protocols target
in-memory stores and thus, network IO is often the scala-
bility bottleneck. Therefore, for scalable 1RTT reads, these
protocols ensure a read at a replica is always local: a client
locally reads at a target replica without additional messages
to other replicas. However, to enable local reads, these proto-
cols must replicate writes to all replicas (not just a quorum)
before writes can complete. This conflation of scalability and
locality, however, has a critical impact on availability because
writes cannot complete if any replica fails [30]†. Further, they
cannot exclude slow replicas when processing writes. We thus
observe a fundamental tradeoff in these protocols: they offer
scalable reads with low latency but do so at the expense of
availability and slowness tolerance.

Summary. Off-the-shelf protocols suffer from poor perfor-
mance and thus are not suitable for building replicated WO-
KV stores. While many solutions have been proposed to im-
prove writes, they do not achieve high throughput and low
latency simultaneously. A few solutions have been proposed
to achieve scalable reads. These protocols either compromise
on latency, or tradeoff write availability and slowness toler-
ance for low latency. Further, protocols that improve writes
suffer from poor read performance (e.g., parallel-execution
protocols do not scale reads); similarly, scalable read pro-
tocols do not offer optimal write performance (e.g., CRAQ
incurs O(n) and Hermes incurs 2RTTs for writes).

We next show how a protocol that carefully exploits the
characteristics of the underlying SSD-based WO-KV store
can advance beyond existing approaches and offer high-
throughput 1RTT writes, and scalable 1RTT reads without
compromising on availability or slowness tolerance (last row).

3 IONIA Ideas and Protocol Overview
We now describe the key insights behind IONIA and provide
an overview. The next section presents the detailed design.

3.1 Key Insights and Ideas
Deferred Parallel Execution with Immediate Durability.
IONIA achieves high-throughput writes with low latency. To
achieve high throughput, IONIA employs techniques from
prior parallel-execution protocols and concurrently executes

†CRAQ and Hermes must wait for an expensive reconfiguration to com-
plete before the system can become available after failures.
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only non-conflicting writes to avoid inconsistencies. How-
ever, existing high-throughput protocols incur high latencies.
We realize this latency cost can be avoided by exploiting
the interface semantics of WO-KV stores. Because WO-KV
stores convert all writes into blind writes, they do not return
an execution result; i.e., the writes are nilext. Thus, similar
to Skyros [28], IONIA need not immediately order and apply
writes to the underlying WO-KV store. Instead, it must only
guarantee that writes are durable before acknowledgment.
IONIA achieves durability in 1RTT by having the clients write
to many replicas in parallel without coordination across repli-
cas. Ordering and parallel execution of writes are deferred to
the background. Thus, IONIA combines the benefits of prior
parallel-execution and low-latency approaches to achieve both
high-throughput and 1RTT writes.

Decoupling Scalability from Locality. Existing low-latency,
scalable read protocols conflate scalability and locality as
they focus on in-memory stores. To achieve scalability, they
require that reads are local (no additional messages to other
replicas). Locality is necessary for scalability in in-memory
stores where network messages are the bottleneck. This con-
flation, however, impacts availability and slowness tolerance.
We realize that in SSD-based WO-KV stores, SSD random
IOPS is the bottleneck, not the network messages. Thus, reads
can scale even if they are non-local (i.e., they send additional
messages to other replicas), as long as the additional mes-
sages access only in-memory state (not the SSD) on other
replicas. That is, scalability can be decoupled from locality in
SSD-based stores.

Based on this insight, IONIA writes only to a quorum for
availability and slowness tolerance and allows reads at any
replica. The challenge, however, is that a read at a replica
cannot rely on just the local state because the replica might
be lagging. IONIA addresses this challenge as follows. For
every read at a follower, IONIA sends a meta query to the
leader (which is guaranteed to have seen all writes). The meta
query helps identify whether or not the result returned by the
follower is up-to-date.

A critical requirement for scalability is that meta queries
must be cheap; in particular, meta queries must avoid SSD
IO. Otherwise, the meta-query throughput could saturate be-
fore the replicas’ collective SSD IOPS are saturated, limiting

scalability. We soon discuss how IONIA can always serve
meta queries from memory without SSD IO (§4). Two factors
help ensure that in-memory meta queries will not become
the bottleneck in practice. First, reads in WO-KV stores are
limited by random IOPS, which is ∼600K IOPS [35] in to-
day’s fast SSDs. On such hardware, even with caching and
skewed workloads, modern WO-KV stores offer only about
850K reads/s [18]. Second, most systems typically use a small
replication factor (3 or 5) [34]. However, even an unoptimized
server in our setup could handle 12M meta-query-like RPCs/s,
which is well over the collective read bandwidth (5∗850K).
Thus, meta queries will not be the scalability bottleneck.

By spreading the read load, IONIA also improves overall
performance under mixed workloads. In WO-KV stores, as
reads increase, the performance drops due to read-write asym-
metry as illustrated in Figure 2. Thus, under mixed work-
loads, taking off reads from the leader and spreading it across
replicas, reduces its read-write ratio which improves leader’s
throughput. For example, consider a workload with 90% reads
and 10% writes; this is a low performance regime for WO-
KVs (L in Figure 2). If the 90% reads are split across five
replicas, the leader would process 18% reads and 10% writes
(i.e., read-write ratio is 65:35), which is a higher performance
regime (H). Overall, distributing reads improves the leader’s
throughput; since the leader’s storage layer is the bottleneck,
improving it boosts the overall performance.

Low-latency Reads via Client-side Consistency Checks.
While the meta-query approach enables scalability, it in itself
does not ensure 1RTT read, which is important for modern
SSD-based stores that offer low latencies. To achieve 1RTT
and scalable reads, our main idea is to have clients send the
meta query to the leader and the actual read to a follower in
parallel. However, this raises a challenge – the leader cannot
definitively determine whether or not the data returned by the
follower is up-to-date. This is because the leader does not
know the follower’s status at the time the read was performed
at the follower. To solve this, IONIA uses a novel client-side
consistency check, where the leader returns information about
the key being read, and the client makes the final decision
about the freshness of the follower’s data. If the client de-
termines that the data is stale, it retries the read. Client-side
checks offer 1RTT reads while ensuring strong consistency.
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3.2 IONIA Protocol Overview

We now provide an overview of IONIA. Figure 3(a) shows
the write path. Clients send writes to all replicas in parallel.
The replicas make the writes durable without any coordina-
tion and respond directly to clients. Once a client receives
enough replies including one from the leader, the write is
complete; clients can proceed without waiting for the writes
to be ordered or applied. Thus, all writes complete in 1RTT.
The 1-RTT write path is similar to Skyros [28].

While IONIA does not order and apply writes in the critical
path, writes must be eventually ordered and applied in the real-
time order to preserve linearizability [33]. That is, if operation
y starts after another operation x completes, then y must be or-
dered after x. However, when concurrently executing requests,
non-conflicting writes (or, writes that update different keys)
can be applied in any order across replicas. Only conflicting
writes that update the same key must be applied in the same
real-time order across replicas. IONIA ensures such correct
write ordering in the background. The leader periodically de-
termines the order for the writes and gets enough followers to
accept the order; all replicas then apply conflicting writes in
the order determined by the leader in the background.

We next discuss the read path (see Figure 3(b) and (c)).
Reads can be served by any replica. When a read to a key
arrives at the leader, there might be updates to the key that
have not been ordered and executed yet. This is because IONIA

orders and executes writes only lazily. Thus, in IONIA, before
the leader can serve a read, it must first check if there are
pending updates to the key being read. If no, the leader serves
the read immediately (3(b)(i)). If there are pending updates,
then the leader synchronously orders and executes the updates
before serving the read (3(b)(ii)). Fortunately, such slow-path
reads are rare in practice due to two reasons. First, the leader
keeps ordering and executing writes in the background; thus,
in most cases, updates are executed already by the time a read
arrives. Second, traces from deployed systems [23] show that
reads to recently written objects are rare [28].

In IONIA, reads are served by followers as well. To prevent
clients from seeing stale data from lagging followers, in addi-
tion to sending the actual read request to a follower, clients
also send a meta query to the leader as shown in 3(c). The
follower locally reads its KV store and returns the kv pair. The
leader responds to the meta query with information about the
key being read (in particular, the latest update applied to the
key). IONIA ensures that the leader can get this information
from memory without an SSD IO. The client uses this infor-
mation to decide whether or not the result from the follower
is valid. If valid, the read completes in 1RTT; in contrast, if
the data is stale, the client retries the read at the leader.

4 IONIA Design and Implementation
We use viewstamped replication (VR) as a baseline to de-
scribe IONIA’s design. VR is leader-based and makes progress

 MakeDurable(w) // add write w to durability log
 AddToExecQueuesWithDeps(B) 
 // add batch to execution queues with dependencies
 Apply(w) // apply write w to KV store
 LeaderRead(k) // returns data, must_sync 
 MetaQuery(k) 
 // returns must_sync, modified_index for k 
 FollowerRead(k) // returns data, applied_index

Figure 4: Storage-system Upcalls in IONIA.

through a sequence of views. In each view, one replica serves
as the leader. VR tolerates f failures with 2f+1 replicas and of-
fers linearizability. Upon writes, the leader appends requests
to a consensus log and sends a prepare to the followers. Once
f followers acknowledge via a prepare-ok (after adding to
their logs), the leader applies the writes and returns the result
to the client. Reads are served by the leader and the system
uses leader leases for consistency. The replication layer inter-
acts with the KV store via upcalls; writes are applied via the
Apply upcall and reads are served via the Read upcall.

IONIA is also leader-based and offers the same guarantees
as VR. IONIA augments the interface between the replication
layer and the storage system with additional upcalls as shown
in Figure 4. These upcalls help IONIA handle different op-
erations. We first explain how IONIA handles writes (§4.1)
and reads (§4.2) during normal operation. We then describe
how IONIA handles failures and view changes (§4.3). Finally,
we present correctness proof sketch (§4.4), model checking
results (§4.5), and implementation details (§4.6).

4.1 Writes

IONIA’s goal is to achieve high-throughput writes with low
latency (1RTT). Our idea to achieve this end is to apply writes
on multiple threads but avoid high latency by deferring or-
dering and execution of writes to the background. IONIA can
defer ordering and execution because WO-KV stores do not
return an execution result. IONIA must only ensure that writes
are durable before acknowledgment (i.e., they will not be lost
even if f replicas fail).

To achieve low-latency durability, IONIA borrows the idea
of durability logs from Skyros [28]. IONIA clients directly
send writes to all replicas. Each replica adds the write to a
separate durability log (via the MakeDurable upcall); the repli-
cas then respond directly to clients without any coordination,
completing writes in 1RTT. Intuitively, the durability logs
contain writes that are not yet ordered and applied. A client
waits for a supermajority ( f + d f/2e+1) acknowledgments
including one from the leader to complete a write. Because the
leader’s response is required to complete writes, the leader’s
durability log captures the correct (real-time) ordering. The
leader uses this property to order requests in the background
during normal operation. When the current leader fails and a
new one is elected, supermajority quorums enable IONIA to
reconstruct the linearizable order as we soon discuss (§4.3).

Although the leader’s durability log captures the correct
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order, the order is not finalized yet as writes might be present
in different orders in durability logs across replicas. This is
because writes are added to durability logs without any coor-
dination. Thus, the leader must finalize the order before the
writes can be applied to the KV store. To do so, the leader
periodically gets a majority of replicas (including self) to
agree on the order. The leader adds requests from its dura-
bility log to its consensus log in order and sends a prepare.
The followers append the requests to their consensus logs
and respond with prepare-ok. Once f followers respond, the
ordering is finalized. The leader can now apply the writes to
the store. The leader also sends a commit which informs the
followers of the latest consensus-log index up to which the
order has been established; the followers can apply writes
up to that index. To improve throughput, the leader batches
several requests in a single prepare; however, this batching
does not affect client-visible latency since the ordering (and
execution) happen entirely in the background.

Once ordering is established, each replica applies writes to
the store in multiple threads. The replicas execute only non-
conflicting writes in parallel. Conflicting writes are executed
serially and in the order they appear in the consensus log;
this ensures that conflicting writes are executed in the same
order across replicas. IONIA realizes the above idea as follows.
Each replica maintains a set of execution queues, one for each
execution thread; an execution thread applies writes from its
queue in order. However, before applying a write w, IONIA

must ensure that all writes that conflict with w and appear
before w in the consensus log have been executed. To capture
and set these dependencies, the replication layer invokes Ad-
dToExecQueuesWithDeps when a batch of writes has been
ordered. The storage layer captures conflicting writes to the
same key by adding writes to a particular key to the same
queue in the order they appear in the batch; the replicas use a
deterministic hash of the key to achieve this. Other conflicts
between requests can be captured by explicitly annotating a
request w with requests from other queues that must be exe-
cuted before w. For example, a multi-key write can be added
to any queue with explicit dependencies to the other requests
in the queues that conflicts with w.

To execute requests, each execution thread retrieves a re-
quest w from its queue and waits until the dependencies of w
are executed before it executes w. Once a replica has applied
a request to the KV store, it removes it from its durability log.
The replica also updates its applied-index, the latest index in
the consensus log up to which it has applied to the KV store.
The leader keeps learning each follower’s applied-index. Fig-
ure 5 shows how writes are ordered, assigned to execution
queues, and finally applied to the KV store.

4.2 Reads
IONIA’s goal is to provide scalable, 1RTT reads without
impacting availability. As we discussed earlier, to ensure
strongly-consistent reads, IONIA issues a meta query to the

durability log consensus log
commit index

ordered ordering
in progress

write

1RTT
unordered …

assign to exec queues 
based on hash(key)

KV

clients

background 
operations

foreground 
operations

Figure 5: IONIA Write Processing at a Replica. The figure shows
how writes are processed in one replica (other replicas are not shown).

leader to check the validity of a read at a follower. IONIA en-
sures scalability by serving the meta queries from the leader’s
memory while the reads at the replicas are bound by SSDs’
random IOPS. Further, to achieve 1RTT reads, IONIA clients
send the actual read request and meta query in parallel and
employ a client-side check to validate the returned data. We
now explain how the meta query and client-side consistency
check mechanisms work. We then describe how IONIA en-
sures that the leader can always serve the meta query from its
memory by maintaining a compact history.

4.2.1 Meta Queries and Client-side Consistency Check

Reads at the leader can be served directly without any cross-
replica checks because the leader is guaranteed to have seen
all writes. However, when a read arrives at the leader, there
might be unordered (and hence not-yet-applied writes) in its
durability log. Thus, upon a read, the leader first checks if
there are such pending updates to the key being read (via
the LeaderRead upcall). If there are no pending updates, the
leader reads and returns the kv pair, finishing the read in 1 RTT.
If there are pending updates, the upcall returns a must_sync
flag. The replication layer then synchronously appends the
pending writes from the durability log to its consensus log,
gets the followers to agree, applies the writes to the KV store,
and finally reads and returns the kv pair. In this case, the read
completes in 2 RTTs. However, such synchronous reads are
rare as we discussed (§3) and will show in our evaluation.

Reads at the followers require a check at the leader because
followers could be lagging. To read at a follower, a client
sends the read to the follower and a meta query to the leader.
To enable 1RTT reads, both requests are sent in parallel. The
meta query specifies the key being read. Upon receiving a
read, the follower reads the kv pair from the store (via the
FollowerRead upcall) and returns it. To answer meta queries,
the leader maintains a history; this history maps a key to the
consensus-log index corresponding to the latest write that
modified the key. Upon a meta query, the leader first checks
its durability log to see if there are pending updates to the key
k being read. If there are none, the leader queries the history
and obtains the latest index i that modified k.

One way to implement the meta queries is to have the leader
make the decision about freshness the of follower’s data.
Specifically, the leader can compare the follower’s applied-
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meta query result
k3 i=3
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Figure 6: History and Meta Queries at Leader. Writes completed:
k1, k2, k3, k2, k4; history trimmed up to 2, so LTI=2. Meta queries for k3 and
k2 return the actual modified index; query for k1 returns LTI because k1 is
not in history; query for k4 returns value of k4 after synchronous execution.

index a f (which it learns periodically) and i. If a f > i, then the
leader could decide that the follower is to up-to-date. But this
approach is incorrect. This is because the follower could re-
turn an older value, then apply a later update, and then update
a f at the leader. Now, if the meta query reaches the leader, it
would incorrectly determine that the follower’s result is valid,
violating strong consistency.

To address this issue, IONIA pushes the check to the client.
In addition to the kv pair, the follower also returns its own
applied-index. Note that the follower reads its applied-index a
before reading from the KV store, so that the kv pair returned
is never older than a, even with concurrent writers. The leader,
instead of making a decision locally, returns the latest index i
that modified k. The client then performs the check by com-
paring a and i. If a >= i, then the follower has applied all the
updates to k and thus the returned data is up-to-date, finishing
the read in 1RTT. If a < i, then the follower has not applied
all updates to k and thus the data is stale. In such cases, the
check fails and the client retries the read at the leader.

When there are pending updates in the durability log for
key being read, the leader knows that the follower’s data will
be stale and could instruct the client to retry. However, this
would increase latency. IONIA optimizes this case by having
the leader synchronously order and execute updates and return
the actual read result. The client then ignores the result from
the follower and uses the one from the leader.

4.2.2 Cheap Meta Queries with Compact History

The history at the leader logically needs to maintain the latest
consensus-log index that modified every key. To ensure meta
queries are fast, the history must be maintained in memory,
not disk. However, maintaining the modified index for every
key in memory is impractical for large disk-based stores.

To solve this problem, IONIA maintains the history only for
recently modified keys. A key is added to the history when
a write to it is recorded on the consensus log. The leader
periodically learns each follower’s applied-index. When all
followers have applied upto i, the history upto i is trimmed.
This raises a problem, however: when a meta query arrives for
a key k, the history may not contain k. Note that a key k being
absent from the history means that all followers have applied
all writes to k. However, the leader still cannot indicate to the
client that the data from the follower is up-to-date. This is
because, the leader doesn’t know which version the follower
returned. Specifically, the follower could have returned an

older version and then applied the latest update, causing the
leader to trim the history before the meta query arrives.

What must the leader return when k is not in the history?
Intuitively, the leader must return an index greater than or
equal to the actual modified index. Returning anything smaller
is unsafe: the client may incorrectly believe the follower has
given the latest data. Thus, when the leader does not find a
key in its history, it returns the index that was last trimmed
from the history; we call this the last-trimmed index or lti.
Returning lti is correct, because if the modified index was part
of the trimmed history, lti would be greater than or at least
equal to the modified index. Figure 6 shows how the leader
maintains the history and returns results for meta queries.
Optimizations. IONIA uses two techniques to optimize the
procedure described so far. First, it uses lazy history trimming.
The history could be trimmed up to i immediately after the
leader learns that all followers have applied up to i. However,
such eager trimming can lead to inefficiencies. For example,
consider a case where a client reads at a follower and get
an applied-index a. After this, the follower applies m more
writes and informs the leader of its applied-index a+m; the
leader trims history upto a+m. If the meta query now arrives
at the leader, the history would not contain the key. The leader
would return a+m (its lti), causing the client check to fail.
To avoid such scenarios, IONIA only lazily trims the history.

Second, a follower that has been disconnected for long or
failed could prevent the leader from trimming the history. To
avoid this problem, the leader maintains a set called active-
followers. Failed followers are removed from the set. The
leader waits only for the followers in the active-followers set
to trim the history. Thus, reads at a disconnected follower that
has missed writes will always be rejected because its applied-
index will be less than the index returned by the leader.

Summary. Figure 7 summarizes IONIA’s read protocol. To
read key k at the leader, the clients invoke LEADER_READ. If
there are no pending updates in the durability log, the leader
reads and returns k. If there are pending updates to k, the
leader orders and applies them, after which it reads and returns
k. When reading at a follower, the client parallely invokes
FOLLOWER_READ and META_QUERY. The follower reads k and
returns it along with its applied-index. In META_QUERY, the
leader first checks if there are pending updates to k. If yes, the
leader orders and executes the pending updates, and returns
the actual data and indicates this in a flag. If there are no
pending updates, the leader returns the modified index (if the
key is in the history) or the last-trimmed index. The client
finally compares the results and either returns the data to the
end application, or retries the read at the leader.

4.3 Failures and View Changes
So far, we described IONIA’s normal operation. We now dis-
cuss failures and view changes. IONIA is similar to VR with re-
spect to both replica recovery [46, §4.3] and view changes [46,
§4.2]. The only difference stems from IONIA’s durability logs
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1: procedure LEADER_READ(k)
2: if pending request for k in durability_log then
3: trigger sync ordering and execution
4: wait till updates are executed

return store.read(k)
1: procedure FOLLOWER_READ(k)

return (store.read(k), applied_index)
1: procedure META_QUERY(k)
2: if pending request for k in durability_log then
3: trigger sync ordering and execution
4: wait till updates are executed
5: return (flag=data, value=store.read(k))
6: if history.contains(k) then
7: return (flag=index, value=history[k])
8: return (flag=index, value=lti) . last trimmed index
1: procedure CLIENT_READ_AT_FOLLOWER(k)
2: invoke_parallel(f_res = FOLLOWER_READ(k), l_res =

META_QUERY(k))
3: if l_res.flag == data then
4: return l_res.value . leader returned actual result
5: a = f_res.value . follower’s applied index
6: i = l_res.value . latest index that modified k
7: if a≥ i then . follower’s result is valid
8: return f_res.value
9: return LEADER_READ(k) . invalid; retry at leader

Figure 7: IONIA Reads. Summary of IONIA’s read protocol.

that VR doesn’t have. IONIA borrows durability logs from
Skyros [28] and thus it inherits Skyros’ recovery and view-
change. We give a brief overview of these procedures.

In IONIA, when a replica recovers, in addition to recovering
the consensus log from the leader of the latest view, a replica
must also recover its durability log. This is straightforward:
the leader sends its durability log (along with the consensus
log as in VR) and the replica sets its durability log as the
one sent by the leader. This is correct because the leader’s
durability log contains completed writes in the correct order.

A view change happens when the leader fails. The main
challenge is that the new leader must recover the requests in
the old leader’s durability log and in the correct linearizable
order. This is where supermajority quorums help. To see why,
consider an incorrect protocol where updates are acknowl-
edged after writing to a majority of durability logs. Suppose
that update a completes after which b starts and completes
(i.e., a→ b). Let Di be the durability log of replica Si. Then,
a possible state is D1:[ab], D2:[ab], D3:[ab], D4:[ba], D5:[ ].
Now, if S1 (the current leader) and S2 fail, then it is impossible
to determine the correct order from the remaining durability
logs. Writing to a supermajority ensures that, after f fail-
ures, at least d f/2e+1 (i.e., a majority within any available
majority) will have the requests in the correct order.

During view change, a new leader in IONIA contacts a ma-
jority, collecting the requests in their durability logs. It then
constructs the set of acknowledged writes, i.e., requests that

are present on at least d f/2e+1 logs. The leader next estab-
lishes the order: for every pair of requests a, b, it examines
if b appears after a on at least d f/2e+ 1 logs. If so, then it
concludes b follows a. Such pairwise dependencies are added
to a DAG G; IONIA produces the total order by topologically
sorting G. These steps are similar to Skyros [28, §4.6]. In
addition, the new leader in IONIA constructs the history over
its consensus log and sets lti to the index of the first log entry.
Fallback Path. To ensure availability in cases where a super-
majority is not available (but a bare majority is), IONIA falls
back to a slow mode where writes are acknowledged only
after being synchronously ordered on a majority in 2 RTTs.

4.4 Correctness Proof Sketch
Two conditions must hold for linearizability. P1. Writes must
respect linearizable ordering. P2. Reads must never expose
stale data. We provide a proof sketch of P1 and P2.
P1. During normal operation, the leader’s durability log is
guaranteed to have the completed writes in the correct order
because a leader response is required for a write to be consid-
ered complete. The leader adds requests to the consensus log
from its durability log in order; thus, the consensus log cap-
tures the linearizable order. IONIA replicas execute ordered
writes in parallel. However, for correctness, conflicting writes
must be executed serially and in the same order across replicas.
The consensus log establishes a total order of writes. Conflict-
ing writes are executed in the order in which they appear in
the consensus log. The consensus logs are identical across
replicas (this is ensured by base VR). Therefore, conflicting
writes are executed in the same order across replicas.

When the current leader fails, a view change occurs, and
the leader of the new view must recover the latest consensus
log and the durability log. The recovered logs must reflect
the correct linearizable order. This recovery procedure in
IONIA is the same as Skyros, which ensures that the new
leader reconstructs the correct ordering of writes in the both
durability and consensus logs [28, §4.7].
P2. First, reads can go to the leader. Because the leader is
guaranteed to have seen all completed writes, and because
IONIA checks the durability log for pending writes, reads at the
leader are guaranteed to see the latest data. We next discuss
the correctness of reads performed at followers.

For linearizability, a read r to a key k must see the effects
of all writes to k that completed before r started. Let w be the
latest write to k. There are two cases to consider.
C1. First, w could have just completed but not executed yet.
In this case, w will be present in the leader’s durability log.
The meta query will thus catch the pending write w in the
durability log and return the latest data after execution. The
client check ensures that r sees the latest data as it ignores the
follower result in this case.
C2. If w was executed, then w may not be in the durability
log and will be present in the leader’s consensus log and
history. Let wi be the index of w in the consensus log; since
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Figure 8: Write-only Workload. The figure plots the maximum
throughput and the average latency for a write-only workload; IONIA, PAXOS-
PE, and unreplicated use 8 threads. The workload loads 350M records.

w is the latest write to k, wi is k’s latest modified index. For
correctness, the index result returned by the leader for a meta
query, resi, has to be at least wi, i.e., resi ≥ wi. If the history
was not trimmed, then k will be part of the history and the
leader will return wi. Instead, if the history was trimmed then
k will not be part of the history. However, we argue why resi
will be greater than or equal to wi even in this case.

Suppose there were m additional writes independent (i.e.,
non-conflicting) of w were executed and also the history was
trimmed up to wi + m. In this case, leader’s last trimmed
index, lti, will be wi +m. When the leader doesn’t find k in
the history, it will return its lti = wi+m, which is greater than
wi. If there were no additional writes and the leader trimmed
up to wi, then the leader’s lti = wi, which is safe.

We have established that the leader returns the correct index
for a meta query. For final correctness, stale results from a
follower must be correctly identified. If wi was not applied at
a follower, the applied-index, a, returned by the follower will
be less than wi. Since the leader’s resi ≥ wi, the client check
will correctly discard the stale result from the follower.

4.5 Model Checking
We have model checked IONIA’s request-processing and view-
change protocols. We focus our discussion on IONIA’s read
protocol because write processing and view changes are simi-
lar to Skyros. We generated and explored over 8M different
states (e.g., followers having applied up to different points,
the leader’s history being trimmed up to different points).
Linearizability was met in all states.

Our checker finds violations when we intentionally intro-
duce bugs. For example, we modified the model to skip the
durability-log check before querying the history upon a meta
query. This is unsafe because there could be a completed
(but unexecuted) update V2 in the durability log and follower
could have only applied V1. The leader will return the modi-
fied index of V1, making the client incorrectly trust V1. Our
checker catches this violation. Similarly, the checker identi-
fies a violation when the leader returns indexes lower than the
modified index. Finally, we modified the model to have the
leader perform the check instead of the client. In this incorrect
version, the leader compares the follower’s applied-index (a)
and the modified index (i) and indicates to the client that data
can be trusted if a >= i. However, this is unsafe: a client could
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Figure 9: Read-only Throughput. Maximum throughput in Multi-
Paxos, Skyros, IONIA-LR, and IONIA under a uniform read-only workload.

read the stale version and by the time its meta query reaches
the leader, the history could be updated. The leader would
then incorrectly indicate to the client that the read is valid.
Our checker catches this violation as well.

4.6 Implementation
We provide key implementation details. IONIA replicas run
SplinterDB [73] as the state machine and communicate via
eRPC [36]. We implemented the upcalls in a wrapper, requir-
ing no changes to SplinterDB. IONIA implements a highly con-
current durability log. The IONIA replication layer manages
all threads, balancing foreground work (e.g., adding writes to
durability logs) and background work (i.e., applying writes
to SplinterDB). The leader maintains highly concurrent and
compact inverse maps to lookup the durability log and history.

5 Evaluation
To evaluate IONIA, we ask the following questions:
• How does IONIA perform compared to various existing

replication approaches for write-only workloads? (§5.1)
• How does IONIA perform for read workloads? (§5.2)
• Does IONIA improve read and also overall performance (by

taking off leader reads) under mixed workloads? (§5.3)
• Does IONIA scale throughput with replicas? (§5.4)
• Does IONIA offer low-latency reads? (§5.5)
• How does history size impact IONIA performance? (§5.6)
• How does IONIA perform on the YCSB benchmark? (§5.7)
• Does IONIA improve performance over unreplicated server

for read and mixed workloads? (§5.8)
• How does IONIA perform under failures? (§5.9)

Setup. We run our experiments on Cloudlab with three repli-
cas. We compare against: 1. off-the-shelf MultiPaxos (equiva-
lently VR [46]), 2. Skyros [28], a recent low-latency protocol,
3. MultiPaxos with parallel execution (we build this baseline
based on CBASE [42]) which we refer to as Paxos-PE, 4.
IONIA-LR, an IONIA variant where reads are restricted to the
leader, and 5. an unreplicated (fault-intolerant) server. All
baselines use batching wherever possible to improve through-
put. IONIA replicates SplinterDB. We integrated SplinterDB
as the state machine in all baselines. Each replica uses an Intel
DC S3520 SATA SSD. Unless specified, we use a 670M KV-
pair dataset with 24B keys and 100B values. SplinterDB uses
a 4GB cache (as prescribed [73]). For fairness, we modified all
baselines to also use eRPC. Unless specified, MultiPaxos-PE,
IONIA, IONIA-LR, and unreplicated use 15 threads.
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Figure 10: Mixed workloads. (a): throughput at various read fractions; (b)-(d): IO utilization of leader in IONIA-LR and IONIA at two read-write points.
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5.1 Write-Only Workload
We first analyze write-only performance of MultiPaxos, Sky-
ros, Paxos-PE, and IONIA by comparing them to the an un-
replicated server. For each system, we vary the number of
clients and measure the maximum throughput and the corre-
sponding average latency. Figure 8 shows the result. We make
the following observations. First, as expected, unreplicated
server offers high throughput and low latency. Second, Mul-
tiPaxos offers significantly lower throughput due to single-
threaded execution; further, coordination in the critical path
and batching increases MultiPaxos’s latencies notably (up
to 5.8×). Third, while Paxos-PE is able to achieve higher
throughput by via parallel execution, its latency is still signifi-
cantly higher compared to unreplicated (up to 6.3 ×). Skyros
is able to closely match the low latency of unreplicated, but it
still offers low throughput similar to MultiPaxos.

Overall, no existing protocol is able to match the high
write performance of unreplicated. IONIA, in contrast, closely
matches the unreplicated server’s high throughput (via par-
allel execution) and low latency (by deferring ordering and
execution to background). This shows that the fault tolerance
provided by IONIA comes at no to little performance cost.

5.2 Read-Only Workload
We next analyze the performance of MultiPaxos, Skyros,
IONIA-LR, and IONIA for a uniform read-only workload. Fig-
ure 9 shows the maximum throughput for each system. Stand-
alone SplinterDB’s read performance is limited by random
IOPS. However, MultiPaxos use a single thread for execut-
ing reads and thus cannot generate the high queue depths
needed to saturate SSD IOPS, resulting in lower through-
put. Skyros suffers from the same low performance as Mul-

tiPaxos due to its single-threaded execution. IONIA-LR exe-
cutes reads on multiple threads, thus achieving higher through-
put, but measuring one level deeper reveals that the IOPS of
leader’s SSD is saturated. Thus, adding more load after this
point doesn’t yield higher throughput in IONIA-LR. In con-
trast, IONIA distributes the reads and extracts bandwidth of
followers’ SSDs too, providing 2.95× higher throughput than
IONIA-LR, achieving essentially linear scaling with 3 replicas.
We note here that the leader in IONIA performs meta queries
upon every follower read, but this does not create a bottleneck
because the meta queries are served from leader’s memory.

5.3 Mixed Write-Read Workload
We now analyze mixed read-write workloads. Figure 10(a)
shows the maximum throughput of MultiPaxos, Skyros,
IONIA-LR, and IONIA for different read percentages with a
uniform workload. MultiPaxos offers significantly lower per-
formance than IONIA-LR. Although Skyros commits writes in
1RTT, it achieves only low throughput due to single-threaded
execution. As reads increase, IONIA-LR’s performance de-
creases. This is due to IONIA-LR’s performance asymmetry
(see Figure 2) as all reads go to the leader. IONIA improves
performance in two ways by distributing reads. First, reads
are served by all replicas, improving read throughput. Second,
offloading some reads moves the leader to a more performant
regime. IONIA has higher benefits with higher read fraction as
more reads can be offloaded. For example, at 75%R, 25%W,
IONIA offers 1.8× better throughput than IONIA-LR.

We show how the leader moves into a more perfor-
mant regime by considering the 75%R, 25%W point. Fig-
ure 10(b) and (c) show the leader’s IO utilization in IONIA-LR

and IONIA, respectively, for this point. As shown in 10(b),
IONIA-LR’s leader serves more reads than writes; this is a low-
performance operating point (denoted as L in 10(a)). IONIA

splits the 75% reads across 3 replicas, and thus the leader pro-
cesses equal amount of reads and writes (i.e., 50%-50%). This
operating point of IONIA shown in 10(c) roughly resembles
the 50%R, 50%W point of IONIA-LR’s leader shown in 10(d),
a more performant operating point (denoted as H in 10(a)).

5.4 Scaling Reads with Replicas
We next show that IONIA can scale reads for cluster sizes
widely used in practice [34]. We run a read-only workload
with 3 and 5 replicas. Figure 11(a) shows that the through-
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Figure 13: Impact of History Size on Read Performance.

put scales linearly. We examine the 5-replica case in more
detail. Figure 11(b) shows the overall request throughput at
the leader and the average throughput of followers for the
5-replica case. Although the leader receives 4× more load,
IONIA is able to scale reads without the leader becoming the
bottleneck because the leader serves this 4× greater load
(meta queries) cheaply from its memory. Examining the IO
utilization reveals that the IOPS on all replicas were saturated,
indicating that the collective IOPS remains the bottleneck.

5.5 Low-Latency Reads
We now show that IONIA offers fast reads under different re-
quest distributions. A read may take more than 1RTT in two
ways. First, a read of key k performed at the leader could
trigger synchronous ordering and execution (because of a
pending update to k). Second, a client may detect that the
follower’s result is stale and retry the read at the leader. Both
these cases would happen more often with more skewed work-
loads. Figure 12 shows fraction of 1RTT reads for a read-write
(50%-50%) mixed workload with different distributions. As
expected, we observe no conflicts for uniform, and thus almost
all reads finish in 1RTT. With a zipfian workload (skew factor
θ = 0.75 and θ = 0.85), we see a slight decrease as some
reads take more RTTs. However, even with a very skewed
workload (θ = 0.99), 85% of reads finish in 1RTT.

5.6 Impact of History Size
We next analyze the impact of history size. Intuitively, with
a large history, the meta query will more often return the ac-
curate last-modified index. With smaller histories, the leader
may often return the last-trimmed index and thus more client
checks will fail, resulting in many reads taking the slow path.
To study this, we run a read-write (50%-50%) workload with
zipfian distribution for various history sizes. As shown in Fig-
ure 13, as expected, slow reads decrease with larger histories.
However, to achieve good performance in our experimen-
tal setup, a 50-MB history is sufficient, a meager 0.06% of
the dataset (which contains 670M KV-pairs of 124B each,
totalling about 77GB).
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5.7 YCSB Benchmark
We now show performance under YCSB [19] workloads:
A (50%W, 50%R), B (5%W, 95%R), C (readonly), D
(5%W,95%R), and F (50%RMW, 50%R); all workloads are
zipfian except D which is latest. Figure 14 plots the through-
put for MultiPaxos, Skyros, IONIA-LR, and IONIA. Under all
workloads, MultiPaxos offers only low throughput. While
Skyros offers marginally higher throughput than MultiPaxos
in some workloads, it offers significantly (an order of mag-
nitude) lower throughput compared to IONIA-LR as IONIA-LR

employs parallel execution. IONIA preserves the write perfor-
mance of IONIA-LR and improves over it by distributing reads.
The improvement over IONIA-LR in write-heavy workloads
(A and F) is roughly 23% to 42%. However, under read-heavy
workloads (B, C, and D), IONIA improves performance by
∼2× over IONIA-LR by distributing the large fraction of reads.

5.8 IONIA vs. Unreplicated: Read and Mixed
Finally, we compare IONIA’s performance to that of an un-
replicated SplinterDB server under read-only and mixed work-
loads. As shown in Figure 15, for read-only workloads, IONIA

offers 2.8× higher throughput by scaling reads, and for mixed
workloads IONIA is 1.22× to 1.45× faster.

5.9 Performance under Failures
In the experiments so far, we demonstrated IONIA’s perfor-
mance without failures. We now show that IONIA’s perfor-
mance and availability are not impacted as long as a super-
majority is available. Figure 16 shows the throughput over
time for a write-only workload with five replicas. Initially, all
replicas are up and IONIA achieves high throughput. After a
while, one of the replicas fails; however, since four replicas
(i.e., a supermajority) are available, IONIA continues to com-
mit requests in 1RTT, thereby maintaining high performance.
In contrast, existing approaches (such as CRAQ [70] and Her-
mes [39]) that offer 1RTT and scalable reads would suffer
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Figure 16: IONIA Performance Under Failures.

from write unavailability even when one replica fails.

6 Discussion
Beyond KV stores. In this paper, we focus on designing
efficient replication for SSD-based KV stores. However, our
ideas apply to other storage systems such as file systems and
databases that are built atop write-optimized structures as well.
A requirement of our read protocol is that it must be possible
to identify which piece of data is read by a request, which
holds in many existing systems. Further, while updates in
WO-KV stores do not return execution results, other storage
systems might support updates that return execution results;
however, such updates can be readily supported by IONIA.
In particular, when a client issues an update that returns an
execution result, IONIA can use the fallback path (described
in §4.3) to commit such updates in 2RTT.
Performance with bigger clusters. With larger cluster sizes,
a concern might be that meta-queries can become the bot-
tleneck before SSD IOPS. However, this is not a concern in
practice today. Most practical systems use only a handful of
replicas (3, 5, or 7) [34] and as shown in §5.4, IONIA scales
well for such practical cluster sizes.
Performance with slower networks. In most storage sys-
tems, SSD IOPS becomes bottlenecked prior to network/NIC.
We expect this trend to hold: as SSD IOPS increases, so
would the network/NIC packet rate and CPU core count. For
example, even when each replica can serve tens of millions
of reads/second (via many SSDs), latest NICs (Connect-x6)
can serve 215M messages/s [51]. Thus, meta-queries would
not be the bottleneck in common scenarios. However, in the
(uncommon) deployment scenario where the network/NIC is
the bottleneck, as an optimization, many meta-queries can be
batched on the client side to amortize CPU/NIC overheads.
We leave this optimization as an avenue for future work.

7 Related Work
Other High-Throughput Protocols. Apart from the ap-
proaches discussed in §2, a few prior approaches enable multi-
core replication through deterministic execution [22, 32].
Other prior systems first execute writes on multiple threads
and then replicate the resultant state [71], avoiding non-
determinism. Such early execution is a mismatch for WO-KV
stores that defer execution for performance. Also, unlike these
approaches, IONIA hides ordering and execution latency.
Other Benefits over Low-Latency Protocols. As discussed

in §2, IONIA offers 1RTT writes like prior low-latency pro-
tocols while offering much higher throughput. IONIA guar-
antees 1RTT writes. Speculative [41, 61] and commuta-
tive [44, 53, 59] protocols, in contrast, incur additional RTTs
when speculations fail or when writes do not commute. Sky-
ros [28] is a recent protocol that guarantees 1RTT for blind
writes by similarly deferring execution. However, Skyros (and
the above prior protocols) do not improve throughput or read
scaling while reducing latency.
Reading at Non-Leader Replicas. Apart from the protocols
discussed in §2, a few prior systems allow reads from a quo-
rum of followers [3, 16]. Shared registers [4] also allows reads
at a quorum. While these approaches avoid reads at the leader,
they cannot linearly scale read throughput as reads must con-
tact a quorum. Applications over shared logs [5–7] can scale
reads by checking the current tail of the log. However, in
these approaches, both reads and writes incur high latency,
unlike IONIA. Quorum leases [54] maintains per-object leases
to scale reads. However, it suffers from high write latency.
Also, it is impractical to maintain per-object leases for large
disk-based stores. Finally, recent approaches can scale reads
through in-network conflict checking [69, 76] or specialized
transport protocol [40]. However, these approaches require
specialized network hardware (e.g., programmable switches).
Leaderless Approaches. In in-memory replicated systems,
message processing overhead at the leader is often the bottle-
neck [53, 61]. To address this, prior work has built leaderless
protocols [49, 53] where any replica can process writes. In a
disk-based replicated storage system, however, the leader’s
storage throughput is the bottleneck. IONIA improves this
throughput by batching writes in the background and also
taking off read requests from the leader.
LSMs in Distributed Systems. Many prior efforts have opti-
mized LSMs in distributed systems. However, their goals are
different from ours, aiming to optimize compactions [29, 72],
storage management [75], and load balance [10].

8 Conclusion
We present IONIA, a new replication protocol suited for mod-
ern WO-KV stores. IONIA exploits the unique characteris-
tics of WO-KV stores to achieve high performance. We ex-
perimentally show that IONIA offers high-throughput, 1RTT
writes, and scalable, 1RTT reads. Given that WO-KV stores
are widely used, IONIA offers a way to make these stores
fault-tolerant with almost no overhead and scale reads.
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