
Can Applications Recover from fsync Failures?
Anthony Rebello, Yuvraj Patel, Ramnatthan Alagappan,

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau
Computer Sciences Department, University of Wisconsin – Madison

Abstract
We analyze how file systems and modern data-intensive ap-
plications react to fsync failures. First, we characterize how
three Linux file systems (ext4, XFS, Btrfs) behave in the pres-
ence of failures. We find commonalities across file systems
(pages are always marked clean, certain block writes always
lead to unavailability), as well as differences (page content and
failure reporting is varied). Next, we study how five widely
used applications (PostgreSQL, LMDB, LevelDB, SQLite,
Redis) handle fsync failures. Our findings show that although
applications use many failure-handling strategies, none are
sufficient: fsync failures can cause catastrophic outcomes
such as data loss and corruption. Our findings have strong
implications for the design of file systems and applications
that intend to provide strong durability guarantees.

1 Introduction
Applications that care about data must care about how data

is written to stable storage. Issuing a series of write system
calls is insufficient. A write call only transfers data from
application memory into the operating system; the OS usually
writes this data to disk lazily, improving performance via
batching, scheduling, and other techniques [25, 44, 52, 53].

To update persistent data correctly in the presence of fail-
ures, the order and timing of flushes to stable storage must be
controlled by the application. Such control is usually made
available to applications in the form of calls to fsync [9, 47],
which forces unwritten (“dirty”) data to disk before returning
control to the application. Most update protocols, such as
write-ahead logging or copy-on-write, rely on forcing data to
disk in particular orders for correctness [30, 31, 35, 38, 46, 56].

Unfortunately, recent work has shown that the behavior of
fsync during failure events is ill-defined [55] and error prone.
Some systems, for example, mark the relevant pages clean
upon fsync failure, even though the dirty pages have not yet
been written properly to disk. Simple application responses,
such as retrying the failed fsync, will not work as expected,
leading to potential data corruption or loss.

In this paper, we ask and answer two questions related to
this critical problem. The first question (§3) relates to the file
system itself: why does fsync sometimes fail, and what is
the effect on file-system state after the failure event?

To answer this first question, we run carefully-crafted
micro-workloads on important and popular Linux file sys-
tems (ext4 [43], XFS [54], Btrfs [50]) and inject targeted

block failures in the I/O stream. We then use a combination
of tools to examine the results. Our findings show commonal-
ities across file systems as well as differences. For example,
all three file systems mark pages clean after fsync fails, ren-
dering techniques such as application-level retry ineffective.
However, the content in said clean pages varies depending
on the file system; ext4 and XFS contain the latest copy in
memory while Btrfs reverts to the previous consistent state.
Failure reporting is varied across file systems; for example,
ext4 data mode does not report an fsync failure immediately
in some cases, instead (oddly) failing the subsequent call.
Failed updates to some structures (e.g., journal blocks) during
fsync reliably lead to file-system unavailability. And finally,
other potentially useful behaviors are missing; for example,
none of the file systems alert the user to run a file-system
checker after the failure.

The second question we ask is (§4): how do important
data-intensive applications react to fsync failures? To answer
this question, we build CuttleFS, a FUSE file system that
can emulate different file system fsync failures. CuttleFS
maintains its own page cache in user-space memory, separate
from the kernel page cache, allowing application developers
to perform durability tests against characteristics of different
file systems, without interference from the underlying file
system and kernel.

With this test infrastructure, we examine the behavior of
five widely-used data-management applications: Redis [18],
LMDB [15], LevelDB [12], SQLite [20] (in both RollBack [1]
and WAL modes [21]), and PostgreSQL [15] (in default and
DirectIO modes). Our findings, once again, contain both
specifics per system, as well as general results true across
some or all. Some applications (Redis) are surprisingly care-
less with fsync, not even checking its return code before
returning success to the application-level update; the result
is a database with old, corrupt, or missing keys. Other ap-
plications (LMDB) exhibit false-failure reporting, returning
an error to users even though on-disk state is correct. Many
applications (Redis, LMDB, LevelDB, SQLite) exhibit data
corruptions; for example, SQLite fails to write data to its roll-
back journal and corrupts in-memory state by reading from
said journal when a transaction needs to be rolled back. While
corruptions can cause some applications to reject newly in-
serted records (Redis, LevelDB, SQLite), both new and old
data can be lost on updates (PostgreSQL). Finally, applica-
tions (LevelDB, SQLite, PostgreSQL) sometimes seemingly



work correctly as long as the relevant data remains in the
file-system cache; when said data is purged from the cache
(due to cache pressure or OS restart), however, the application
then returns stale data (as retrieved from disk).

We also draw high-level conclusions that take both file-
system and application behavior into account. We find that ap-
plications expect file systems on an OS platform (e.g., Linux)
to behave similarly, and yet file systems exhibit nuanced and
important differences. We also find that applications employ
numerous different techniques for handling fsync failures,
and yet none are (as of today) sufficient; even after the Post-
greSQL fsync problem was reported [55], no application yet
handles its failure perfectly. We also determine that applica-
tion recovery techniques often rely upon the file-system page
cache, which does not reflect the persistent state of the system
and can lead to data loss or corruption; applications should en-
sure recovery protocols only use existing persistent (on-disk)
state to recover. Finally, in comparing ext4 and XFS (journal-
ing file systems) with Btrfs (copy-on-write file system), we
find that the copy-on-write strategy seems to be more robust
against corruptions, reverting to older states when needed.

The rest of this paper is organized as follows. First, we
motivate why this study is necessary (§2), followed by a file-
system study (§3). Next, we study how applications react to
fsync failures (§4). We then discuss the implications of our
findings (§5), discuss related work (§6), and conclude (§7).

2 Motivation
Applications that manage data must ensure that they can

handle and recover from any fault that occurs in the storage
stack. Recently, a PostgreSQL user encountered data corrup-
tion after a storage error and PostgreSQL played a part in that
corruption [17]. Because of the importance and complexity
of this error, we describe the situation in detail.

PostgreSQL is an RDBMS that stores tables in separate
files and uses a write-ahead log (wal) to ensure data in-
tegrity [16]. On a transaction commit, the entry is written
to the log and the user is notified of the success. To ensure
that the log does not grow too large (as it increases startup
time to replay all entries in the log), PostgreSQL periodically
runs a checkpoint operation to flush all changes from the log
to the different files on disk. After an fsync is called on each
of the files, and PostgreSQL is notified that everything was
persisted successfully, the log is truncated.

Of course, operations on persistent storage do not always
complete successfully. Storage devices can exhibit many dif-
ferent types of partial and transient failures, such as latent
sector errors [27, 41, 51], corruptions [26], and misdirected
writes [42]. These device faults are propagated through the
file system to applications in a variety of ways [40, 49], often
causing system calls such as read, write, and fsync to fail
with a simple return code.

When PostgreSQL was notified that fsync failed, it retried
the failed fsync. Unfortunately, the semantics for what should

happen when a failed fsync is retried are not well defined.
While POSIX aims to standardize behavior, it only states that
outstanding IO operations are not guaranteed to have been
completed in the event of failures during fsync [14]. As we
shall see, on many Linux file systems, data pages that fail to
be written, are simply marked clean in the page cache when
fsync is called and fails. As a result, when PostgreSQL re-
tried the fsync a second time, there were no dirty pages for
the file system to write, resulting in the second fsync suc-
ceeding without actually writing data to disk. PostgreSQL as-
sumed that the second fsync persisted data and continued to
truncate the write-ahead log, thereby losing data. PostgreSQL
had been using fsync incorrectly for 20 years [55].

After identifying this intricate problem, developers changed
PostgreSQL to respond to the fsync error by crashing and
restarting without retrying the fsync. Thus, on restart, Post-
greSQL rebuilds state by reading from the wal and retrying
the entire checkpoint process. The hope and intention is that
this crash and restart approach will not lose data. Many other
applications like WiredTiger/MongoDB [24] and MySQL [3]
followed suit in fixing their fsync retry logic.

This experience leads us to ask a number of questions. As
application developers are not certain about the underlying
file-system state on fsync failure, the first part of our study
answers what happens when fsync fails. How do file systems
behave after they report that an fsync has failed? Do differ-
ent Linux file systems behave in the same way? What can
application developers assume about the state of their data
after an fsync fails? Thus, we perform an in-depth study into
the fsync operation for multiple file systems.

The second part of our study looks at how data-intensive
applications react to fsync failures. Does the PostgreSQL
solution indeed work under all circumstances and on all file
systems? How do other data-intensive applications react to
fsync failures? For example, do they retry a failed fsync,
avoid relying on the page cache, crash and restart, or employ a
different failure-handling technique? Overall, how well do ap-
plications handle fsync failures across diverse file systems?

3 File System Study
Our first study explores how file systems behave after re-

porting that an fsync call has failed. After giving a brief back-
ground of caching in file systems, we describe our methodol-
ogy and our findings for the three Linux file systems.

3.1 Background
File systems provide applications with open, read, and

write system calls to interact with the underlying storage
media. Since block devices such as hard disks and solid state
drives are much slower than main memory [57], the operating
system maintains a page cache of frequently used pages of
files in kernel space in main memory.

When an application calls read, the kernel first checks if
the data is in the page cache. If not, the file system retrieves



the data from the underlying storage device and stores it in the
page cache. When an application calls write, the kernel only
dirties the page in memory while notifying the application that
the write succeeded; there is now a mismatch between the
data in memory and on the device and data can potentially be
lost. For durability, the file system periodically synchronizes
content between memory and disk by flushing dirty pages
and marking them clean. Applications that require stronger
durability guarantees can force the dirty pages to disk using
the fsync system call.

Applications can choose to bypass the page cache alto-
gether by opening files with O_DIRECT (DirectIO). For
caching, applications must perform their own in user space.
Calls to fsync are still required since data may be cached
within the underlying storage media; an fsync issues a
FLUSH command to the underlying device so it pushes data
all the way to stable storage.

3.2 Methodology
To understand how file systems should behave after report-

ing an fsync failure, we begin with the available documenta-
tion. The fsync man pages [9] report that fsync may fail for
many reasons: the underlying storage medium has insufficient
space (ENOSPC or EDQUOT), the file descriptor is not valid
(EBADF), or the file descriptor is bound to a file that does not
support synchronization (EINVAL). Since these errors can be
discovered by validating input and metadata before initiating
write operations, we do not investigate them further.

We focus on errors that are encountered only after the file
system starts synchronizing dirty pages to disk; in this case,
fsync signals an EIO error. EIO errors are difficult to handle
because the file system may have already begun an operation
(or changed state) that it may or may not be able to revert.

To trigger EIO errors, we consider single, transient, write
faults in line with the fail-partial failure model [48,49]. When
the file system sends a write request to the storage device, we
inject a fault for a single sector or block within the request.
Specifically, we build a kernel module device-mapper target
that intercepts block-device requests from the file system
and fails a particular write request to a particular sector or
block while letting all other requests succeed; this allows us
to observe the impact on an unmodified file system.

3.2.1 Workloads
To exercise the fsync path, we create two simple work-

loads that are representative of common write patterns seen
in data-intensive applications.

Single Block Update (wsu): open an existing file contain-
ing three pages (12KB) and modify the middle page. This
workload resembles many applications that modify the con-
tents of existing files: LMDB always modifies the first two
metadata pages of its database file; PostgreSQL stores ta-
bles as files on disk and modifies them in-place. Specif-
ically, wsu issues system calls in the following sequence:
open, lseek(4K), write(4K), fsync, fsync, sleep(40),

close. The first fsync forces the dirty page to disk. While
one fsync is sufficient in the absence of failures, we are inter-
ested in the impact of fsync retries after a failure; therefore,
wsu includes a second fsync. Finally, since ext4, XFS, and
Btrfs write out metadata and checkpoint the journal periodi-
cally, wsu includes a sleep for 40 seconds.

Multi Block Append (wma): open a file in append mode
and write a page followed by an fsync; writing and fsyncing
is repeated after sleeping. This workload resembles many ap-
plications that periodically write to a log file: Redis writes
every operation that modifies its in-memory data structures to
an append only file; LevelDB, PostgreSQL, and SQLite write
to a write-ahead-log and fsync the file after the write. wma
repeats these operations after a delay to allow checkpointing
to occur; this is realistic as clients do not always write continu-
ously and checkpointing may occur in those gaps. Specifically,
wma issues system calls in the following sequence: open (in
append mode), write(4K),fsync, sleep(40), write(4K),
fsync, sleep(40), close.
3.2.2 Experiment Overview

We run the workloads on three different file systems:
ext4, XFS, and Btrfs, with default mkfs and mount options.
We evaluate both ext4 with metadata ordered journaling
(data=ordered) and full data journaling (data=journal). We
use an Ubuntu OS with Linux kernel version 5.2.11.

For each file system and workload, we first trace the block
write access pattern. We then repeat the workload multiple
times, each time configuring the fault injector to fail the ith

write access to a given sector or block. We only fail a single
block or sector within the block in each iteration. We use a
combination of offline tools (debugfs and xfs_db) and doc-
umentation to map each block to its respective file system
data structure. We use SystemTap [22] to examine the state
of relevant buffer heads and pages associated with data or
metadata in the file system.
3.2.3 Behavior Inference

We answer the following questions for each file system:
Basics of fsync Failures:

Q1 Which block (data, metadata, journal) failures lead to
fsync failures?

Q2 Is metadata persisted if a data block fails?
Q3 Does the file system retry failed block writes?
Q4 Are failed data blocks marked clean or dirty in memory?
Q5 Does in-memory page content match what is on disk?

Failure Reporting:

Q6 Which future fsync will report a write failure?
Q7 Is a write failure logged in the syslog?

After Effects of fsync Failure:

Q8 Which block failures lead to file-system unavailability?



Q9 How does unavailability manifest? Does the file system
shutdown, crash, or remount in read-only mode?

Q10 Does the file suffer from holes or block overwrite fail-
ures? If so, in which parts of a file can they occur?1

Recovery:

Q11 If there is any inconsistency introduced due to fsync
failure, can fsck detect and fix it?

3.3 Findings
We now describe our findings for the three file systems we

have characterized: ext4, XFS, and Btrfs. Our answers to our
posed questions are summarized in Table 1.
3.3.1 Ext4

The ext4 file system is a commonly-used journaling file sys-
tem on Linux. The two most common options when mounting
this file system are data=ordered and data=journal which
enable ext4 ordered mode and ext4 data mode, respectively.
Ext4 ordered mode writes metadata to the journal whereas
ext4 data mode writes both data and metadata to the journal.
Ext4 ordered mode: We give an overview of ext4 ordered
mode by describing how it behaves for our two representative
workloads when no failures occur.

Single Block Update (wsu). When no fault is injected and
fsync is successful, ext4 ordered mode behaves as follows.
During the write (Step 1), ext4 updates the page in the page
cache with the new contents and marks the page dirty. On
fsync, the page is written to a data block; after the data-block
write completes successfully, the metadata (i.e., the inode with
a new modification time) is written to the journal, and fsync
returns 0 indicating success (Step 2). After the fsync, the
dirty page is marked clean and contains the newly written data.
On the second fsync, as there are no dirty pages, no block
writes occur, and as there are no errors, fsync returns 0 (Step
3). During sleep, the metadata in the journal is checkpointed
to its final in-place block location (Step 4). No writes or
changes in page state occur during the close (Step 5).

If fsync fails (i.e., returns -1 with errno set to EIO), a vari-
ety of write problems could have occurred. For example, the
data-block write could have failed; if this happens, ext4 does
not write the metadata to the journal. However, the updated
page is still marked clean and contains the newly written data
from Step 1, causing a discrepancy with the contents on disk.
Furthermore, even though the inode table was not written to
the journal at the time of the data fault, the inode table con-
taining the updated modification time is written to the journal
on the second fsync in Step 3. Steps 4 and 5 are the same as
above, and thus the inode table is checkpointed.

Thus, applications that read this data block while the page
remains in the page cache (i.e., the page has not been evicted

1In file-system terminology, a hole is a region in a file for which there is
no block allocated. If a block is allocated but not overwritten with the new
data, we consider the file to have a non-overwritten block and suffer from
block overwrite failure.

and the OS has not been rebooted) will see the new contents of
the data; however, when the page is no longer in memory and
must be read from disk, applications will see the old contents.

Alternatively, if fsync failed, it could be because a write to
one of the journal blocks failed. In this case, ext4 aborts the
journal transaction and remounts the file system in read-only
mode, causing all future writes to fail.

Multi Block Append (wma). This next workload exercises
additional cases in the fsync error path. If there are no er-
rors and all fsyncs are successful, the multi-block append
workload on ext4 behaves as follows. First, during write,
ext4 creates a new page with the new contents and marks it
dirty (Step 1). On fsync, the page is written to a newly allo-
cated on-disk data block; after the data-block write completes
successfully, the relevant metadata (i.e., both the inode table
and the block bitmap) are written to the journal, and fsync
returns success (Step 2). As in wsu, the page is marked clean
and contains the newly written data. During sleep, the meta-
data is checkpointed to disk (Step 3); specifically, the inode
contains the new modification time and a link to the newly
allocated block, and the block bitmap now indicates that the
newly allocated block is in use. The pattern is repeated for
the second write (Step 4), fsync (Step 5), and sleep (Step
6). As in wsu, there are no write requests or changes in page
state during close (Step 7).

An fsync failure could again indicate numerous problems.
First, a write to a data block could have failed in Step 2. If this
is the case, the fsync fails and the page is marked clean; as in
wsu, the page contains the newly written data, differing from
the on-disk block that contains the original block contents.
The inode table and block bitmap are written to disk in Step 3;
thus, even though the data itself has not been written, the inode
is modified to reference this block and the corresponding bit
is set in the block bitmap. When the workload writes another
4KB of data in Step 4, this write continues oblivious of the
previous fault and Steps 5, 6, and 7 proceed as usual.

Thus, with a data-block failure, the on-disk file contains
a non-overwritten block where it was supposed to contain
the data from Step 1. A similar possibility is that the write
to a data block in Step 5 fails; in this case, the file has a
non-overwritten block at the end instead of somewhere in the
middle. Again, an application that reads any of these failed
data blocks while they remain in the page cache will see
the newly appended contents; however, when any of those
pages are no longer in memory and must be read from disk,
applications will read the original block contents.

An fsync failure could also indicate that a write to a
journal-block failed. In this case, as in wsu, the fsync re-
turns an error and the following write fails since ext4 has
been remounted in read-only mode.

Because this workload contains an fsync after the meta-
data has been checkpointed in Step 3, it also illustrates the
impact of faults when checkpointing the inode table and block
bitmap. We find that despite the fact that a write has failed and
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

ext4 ordered data,jrnl yes A clean B no B immediate yes jrnl remount-ro NOB, anywhere A no

data data,jrnl yes A clean B no B next C yes jrnl remount-ro NOB, anywhere A no

XFS data,jrnl yes A meta clean B no B immediate yes jrnl,meta shutdown NOB, within A no

Btrfs data,jrnl no clean yes immediate yes jrnl,meta remount-ro HOLE, within D yes

A Non-overwritten blocks (Q10) occur because metadata is per-
sisted despite data-block failure (Q2).

B Marking a dirty page clean (Q4) even though the content does not match the disk (Q5) is problematic.

C Delayed reporting (Q6) of fsync failures may confuse appli-
cation error-handling logic.

D Continuing to write to a file after an fsync failure is similar to writing to an offset greater than file
size, causing a hole in the skipped portion (Q10).

Table 1: Behavior of Various File Systems when fsync Fails. The table summarizes the behavior of the three file systems: ext4, XFS, and Btrfs
according to the questions posed in Section 3.2.3. The questions are divided into four categories mentioned at the top. For questions that
require identifying a block type, we use the following abbreviations: Data Block (data), Journal Block (jrnl), Metadata Block (meta). In Q9,
Remount-ro denotes remounting in read-only mode. In Q10, “anywhere” and “within” describe the locations of the holes or non-overwritten
blocks (NOB); “within” does not include the end of the file. Entries with a superscript denote a problem.

the file system will now be in an inconsistent state, the follow-
ing fsync does not return an error. However, the metadata
error is logged to syslog.

We note that for none of these fsync failures does ext4
ordered mode recommend running the file system checker;
furthermore, running the checker does not identify or repair
any of the preceding problems. Finally, future calls to fsync
never retry previous data writes that may have failed. These
results for ext4 ordered mode are all summarized in Table 1.

The ext4 file system also offers functionality to abort the
journal if an error occurs in a file data buffer (mount option
data_err=abort) and remount the file system in read-only
mode on an error (mount option errors=remount-ro). How-
ever, we observe that the results are identical with and without
the mount options. 2

Ext4 Data Mode: Ext4 data mode differs from ordered mode
in that data blocks are first written to the journal and then later
checkpointed to their final in-place block locations.

As shown in Table 1, the behavior of fsync in ext4 data
mode is similar to that in ext4 ordered mode for most cases:
for example, on a write error, pages may be marked clean
even if they were not written out to disk, the file system is
remounted in read-only mode on journal failures, meta-data
failures are not reported by fsync, and files can end up with
non-overwritten blocks in the middle or end.

However, the behavior of ext4 data mode differs in one im-
portant scenario. Because data blocks are first written to the
journal and later to their actual block locations during check-
pointing, the first fsync after a write may succeed even if a
data block will not be successfully written to its permanent
in-place location. As a result, a data-block fault causes the sec-

2We verified our observations by reproducing them using standard Linux
tools and have filed a bug report for the same [2].

ond fsync to fail instead of the first; in other words, the error
reporting by fsync is delayed due to a failed intention [36].

3.3.2 XFS
XFS is a journaling file system that uses B-trees. Instead

of performing physical journaling like ext4, XFS journals
logical entries for changes in metadata.

As shown in Table 1, from the perspective of error reporting
and fsync behavior, XFS is similar to that of ext4 ordered
mode. Specifically, failing to write data blocks leads to fsync
failure and the faulty data pages are marked clean even though
they contain new data that has not been propagated to disk; as
a result, applications that read this faulty data will see the new
data only until the page has been evicted from the page cache.
Similarly, failing to write a journal block will cause fsync
failure, while failing to write a metadata block will not. XFS
remains available for reads and writes after data-block faults.

XFS handles fsync failures in a few ways that are dif-
ferent than ext4 ordered mode. First, on a journal-block
fault, XFS shuts down the file system entirely instead
of merely remounting in read-only mode; thus, all sub-
sequent read and write operations fail. Second, XFS re-
tries metadata writes when it encounters a fault during
checkpointing; the retry limit is determined by a value in
/sys/fs/xfs/*/error/metadata/*/max_retries, but is
infinite by default. If the retry limit is exceeded, XFS again
shuts down the file system.

The multi-block append workload illustrates how XFS han-
dles metadata when writes to related data blocks fail. If the
write to the first data block fails, XFS writes no metadata
to the journal and fails the fsync immediately. When later
data blocks are successfully appended to this file, the meta-
data is updated which creates a non-overwritten block in the
file corresponding to the first write. If instead, a write to a



data block contained in the last journal transaction fails, the
on-disk metadata is not updated to reflect any of these last
writes (i.e., the size of the file is not increased if any related
blocks fail in the last transaction). 3 Thus, while in ext4 a
failed write always causes a non-overwritten block, in XFS,
non-overwritten blocks cannot exist at the end of a file. How-
ever, for either file system, if the failed blocks remain in the
page cache, applications can read those blocks regardless of
whether they are in the middle or the end of a file.

3.3.3 Btrfs
Btrfs is a copy-on-write file system that avoids writing to

the same block twice except for the superblock which contains
root-node information. At a high level, some of the actions in
Btrfs are similar to those in a journaling file system: instead
of writing to a journal, Btrfs writes to a log tree to record
changes when an fsync is performed; instead of checkpoint-
ing to fixed in-place locations, Btrfs writes to new locations
and updates the roots in its superblock. However, since Btrfs
is based on copy-on-write, it has a number of interesting dif-
ferences in how it handles fsync failures compared to ext4
and XFS, as shown in Table 1.

Like ext4 ordered mode and XFS, Btrfs fails fsync when it
encounters data-block faults. However, unlike ext4 and XFS,
Btrfs effectively reverts the contents of the data block (and
any related metadata) back to its old state (and marks the page
clean). Thus, if an application reads the data after this failure,
it will never see the failed operation as a temporary state. As
in the other file systems, Btrfs remains available after this
data-block fault.

Similar to faults to the journal in the other file systems,
in Btrfs, faults to the log-tree result in a failed fsync and a
remount in read-only mode. Unlike ext4 and XFS, faults in
the metadata blocks during checkpointing result in a remount
in read-only mode (but fsync still does not return an error).

The multi-block append workload illustrates interesting
behavior in Btrfs block allocation. If the first append fails, the
state of the file system, including the B-tree that tracks all free
blocks, is reverted. However, the next append will continue
to write at the (incorrectly) updated offset stored in the file
descriptor, creating a hole in the file. Since the state of the B-
tree was reverted, the deterministic block allocator will choose
to allocate the same block again for the next append operation.
Thus, if the fault to that particular block was transient, the
next write and fsync will succeed and there will simply be
a one block hole in the file. If the fault to that particular block
occurs multiple times, future writes will continue to fail; as a
result, Btrfs may cause more holes within a file than ext4 and
XFS. However, unlike ext4 and XFS, the file does not have
block overwrite failures.

3To be precise, the mtime and ctime of the file are updated, but not the size
of the file. Additional experiments removed for space confirm this behavior.

3.3.4 File System Summary
We now present a set of observations for the file systems

based on the questions from Section §3.2.3.
File System Behavior to fsync Failures. On all the

three file systems, only data and journal-block failures lead to
fsync failures (Q1). Metadata-block failures do not result in
fsync failures as metadata blocks are written to the journal
during an fsync. However, during a checkpoint, any metadata
failure on XFS and Btrfs lead to unavailability (Q8) while
ext4 logs the error and continues.4

On both modes of ext4 and XFS, metadata is persisted
even after the file system encounters a data-block failure
(Q2); timestamps are always updated in both the file systems.
Additionally, ext4 appends a new block to the file and updates
the file size while XFS does so only when followed by a
future successful fsync. As a result, we find non-overwritten
blocks in both the middle and end of files for ext4, but in only
the middle for XFS (Q10). Btrfs does not persist metadata
after a data-block failure. However, because the process file-
descriptor offset is incremented, future writes and fsyncs
cause a hole in the middle of the file (Q10).

Among the three, XFS is the only file system that retries
metadata-block writes. However, none of them retry data or
journal-block writes (Q3).

All the file systems mark the page clean even after fsync
fails (Q4). In both modes of ext4 and XFS, the page contains
the latest write while Btrfs reverts the in-memory state to be
consistent with what is on disk (Q5).

We note that even though all the file systems mark the
page clean, this is not due to any behavior inherited from the
VFS layer. Each file system registers its own handlers to write
pages to disk (ext4_writepages, xfs_vm_writepages, and
btrfs_writepages). However, each of these handlers call
clear_page_dirty_for_io before submitting the bio re-
quest and do not set the dirty bit in case of failure in order to
avoid memory leaks5, replicating the problem independently.

Failure Reporting. While all file systems report data-
block failures by failing fsync, ext4 ordered mode, XFS, and
Btrfs fail the immediate fsync. As ext4 data mode puts data
in the journal, the first fsync succeeds and the next fsync
fails. (Q6). All block write failures, irrespective of block type
are logged in the syslog (Q7).

After Effects. Journal block failures always lead to file-
system unavailability. On XFS and Btrfs, metadata-block fail-
ures do so as well (Q8). While ext4 and Btrfs remount in
read-only mode, XFS shuts down the file system (Q9). Holes
and non-overwritten blocks (Q10) have been covered previ-
ously as part of Q2.

Recovery. None of the file systems alert the user to run a

4Ext4’s error handling behavior for metadata has unintended side-effects
but we omit the results as the rest of the paper focuses on data-block failures.

5Ext4 focuses on the common case of users removing USB sticks while
still in use. Dirty pages that can never be written to the removed USB stick
have to be marked clean to unmount the file system and reclaim memory [23].



file-system checker. However, the Btrfs checker is capable of
detecting holes in files (Q11).

4 Application Study
We now focus on how applications are affected by fsync

failures. In this section, we first describe our fault model
with CuttleFS, followed by a description of the workloads,
execution environment, and the errors we look for. Then,
we present our findings for five widely used applications:
Redis (v5.0.7), LMDB (v0.9.24), LevelDB (v1.22), SQLite
(v3.30.1), and PostgreSQL (v12.0).

4.1 CuttleFS
We limit our study to how applications are affected by

data-block failures as journal-block failures lead to unavail-
ability and metadata-block failures do not result in fsync
failures (§3.3). Our fault model is simple: when an applica-
tion writes data, we inject a single fault to a data block or a
sector within it.

We build CuttleFS6 - a FUSE [39] file system to emulate
the different file-system reactions to failures defined by our
fault model. Instead of using the kernel’s page cache, CuttleFS
maintains its own page cache in user-space memory. Write op-
erations modify user-space pages and mark them dirty while
read operations serve data from these pages. When an appli-
cation issues an fsync system call, CuttleFS synchronizes
data with the underlying file system.

CuttleFS has two modes of operation: trace mode and fault
mode. In trace mode, CuttleFS tracks writes and identifies
which blocks are eventually written to disk. This is different
from just tracing a write system call as an application may
write to a specific portion of a file multiple times before it is
actually flushed to disk.

In fail mode, CuttleFS can be configured to fail the ith write
to a sector or block associated with a particular file. On fsync
failure, as CuttleFS uses in-memory buffers, it can be directed
to mark a page clean or dirty, keep the latest content, or revert
the file to the previous state. Error reporting behavior can be
configured to report failures immediately or on the next fsync
call. In short, CuttleFS can react to fsync failures in any of the
ways mentioned in Table 1 (Q4,5,6). Additionally, CuttleFS
accepts commands to evict all or specific clean pages.

We configure CuttleFS to emulate the failure reactions of
the file systems studied in Section 3.3. For example, in order to
emulate ext4 ordered mode and XFS (as they both have similar
failure reactions), we configure CuttleFS to mark the page
clean, keep the latest content, and report the error immediately.
Henceforth, when presenting our findings and referring to
characteristics emulated by CuttleFS, we use CuttleFSext4o,xfs
for the above configuration. When the page is marked clean,
has the latest content, but the error is reported on the next

6Cuttlefish are sometimes referred to as the “chameleons of the sea”
because of their ability to rapidly alter their skin color within a second.
CuttleFS can change characteristics much faster.

fsync, we use CuttleFSext4d. When the page is marked clean,
the content matches what is on disk, and the error is reported
immediately, we refer to it as CuttleFSbtrfs.

4.2 Workloads and Execution Environment
We run CuttleFS in trace mode and identify which blocks

are written to by an application. For each application, we
choose a simple workload that inserts a single key-value pair,
a commonly used operation in many applications. We perform
experiments both with an existing key (update) as well as a
new key (insert). The keys can be of size 2B or 1KB.7 The
values can be of size 2B or 12KB. We run experiments for all
four combinations. The large keys allow for the possibility of
failing a single sector within the key and large values for pages
within a value. Since SQLite and PostgreSQL are relational
database management systems, we create a single table with
two columns: keys and values.

Using the trace, we generate multiple failure sequences for
each of the identified blocks and sectors within them. We then
repeat the experiment multiple times with CuttleFS in fault
mode, each time with a different failure sequence and file-
system reaction. In order to observe the effects after a fault,
we dump all key-value pairs before and after the workload.

We look for the following types of errors when performing
the experiments:

• OldValue (OV): The system returns the new value for a
while but then reverts to an old value, or the system conveys
a successful response but returns the old value later on.

• FalseFailure (FF): The system informs the user that the
operation failed but returns the new value in the future.

• KeyCorruptions (KC) and ValueCorruptions (VC):
Corrupted keys or values are obliviously returned.

• KeyNotFound (KNF): The system informs the user that it
has successfully inserted a key but it cannot be found later
on, or the system fails to update a key to a new value but
the old key-value pair disappears as well.

We also identify the factors within the execution environ-
ment that cause all these errors to be manifested. If an ap-
plication maintains its own in-memory data structures, some
errors may occur only when an application restarts and re-
builds in-memory state from the file system. Alternatively,
the manifestation of these errors may depend on state changes
external to the application, such as a single page eviction or a
full page cache flush. We encode these different scenarios as:

• App=KeepGoing: The application continues without
restarting.

• App=Restart: The application restarts either after a crash
or a graceful shutdown. This forces the application to re-
build in-memory state from disk.

7As LMDB limits key sizes to 511B, we use key sizes of 2B and 511B
for LMDB experiments.



A=KeepGoing A=Restart
BC=Keep
BC=Evict

ext4o,xfs =

{ clean
differs
immediate

ext4d =

{ clean
differs
next fsync

btrfs =

{ clean
matches
immediate

Applications OV FF KC VC KNF OV FF KC VC KNF OV FF KC VC KNF
Redis
LMDB
LevelDB

SQLite Rollback
WAL

PostgreSQL Default
Direct I/O

Table 2: Findings for Applications on fsync Failure. The table lists the different types of errors that manifest for applications when fsync
fails due to a data-block write fault. The errors (OV, FF, KC, VC, KNF) are described in §4.2. We group columns depending on how a
file system reacts to an fsync failure according to our findings in §3.3 for Q4, Q5, and Q6. For example, both ext4 ordered and XFS
(ext4o,xfs) mark a page clean, the page differs in in-memory and on-disk content, and the fsync failure is reported immediately. For
each application, we describe when the error manifests, in terms of combinations of the four different execution environment factors (§4.2)
whose symbols are provided at the top left corner. For example, OldValue manifests in Redis in the first group (ext4-ordered, XFS) only on
(A)App=Restart,(BC)BufferCache=Evict. However, in the last group (Btrfs), the error manifests both on App=Restart,BufferCache=Evict as
well as App=Restart,BufferCache=Keep, depicted as a combination of the two symbols.

• BufferCache=Keep: No evictions take place.
• BufferCache=Evict: One or more clean pages are evicted.

Note that BufferCache=Evict can manifest by clearing the
entire page cache, restarting the file system, or just evict-
ing clean pages due to memory pressure. A full system
restart would be the combination of App=Restart and Buffer-
Cache=Evict, which causes a loss of both clean and dirty
pages in memory while also forcing the application to restart
and rebuild state from disk.

Configuring CuttleFS to fail a certain block and react ac-
cording to one of the file-system reactions while the ap-
plication runs only addresses App=KeepGoing and Buffer-
Cache=Keep. The remaining three scenarios are addressed as
follows. To simulate App=Restart and BufferCache=Keep, we
restart the application and dump all key-value pairs, ensuring
that no page in CuttleFS is evicted. To address the remaining
two scenarios, we instruct CuttleFS to evict clean pages for
both App=KeepGoing and App=Restart.

4.3 Findings
We configured all five applications to run in the form that

offers most durability and discuss what they are in their re-
spective sections. Table 2 summarizes the per-application
results across different failure characteristics.

Note that these results are only for the simple workload
that inserts a single key-value pair. A complex workload may
exhibit more errors or mask the ones we observe.

Redis: Redis is an in-memory data-structure store, used
as a database, cache, and message broker. By default, it pe-
riodically snapshots in-memory state to disk. However, for
better durability guarantees, it provides options for writing
every operation that modifies the store to an append-only file
(aof) [19] and how often to fsync the aof. In the event of a
crash or restart, Redis rebuilds in-memory state by reading
the contents of the aof.

We configure Redis to fsync the file for every operation,

providing strong durability. Thus, whenever Redis receives a
request like an insert operation that modifies state, it writes
the request to the aof and calls fsync. However, Redis trusts
the file system to successfully persist the data and does not
check the fsync return code. Regardless of whether fsync
fails or not, Redis returns a successful response to the client.

As Redis returns a successful response to the client irre-
spective of fsync failure, FalseFailures do not occur. Since
Redis reads from disk only when rebuilding in-memory state,
errors may occur only during App=Restart.

On CuttleFSext4o,xfs and CuttleFSext4d, Redis exhibits Old-
Value, KeyCorruption, ValueCorruption, and KeyNotFound
errors. However, as seen in Table 2, these errors occur only on
BufferCache=Evict and App=Restart. On BufferCache=Keep,
the page contains the latest write which allows Redis to re-
build the latest state. However, when the page is evicted,
future reads will force a read from disk, causing Redis to read
whatever is on that block. OldValue and KeyNotFound errors
manifest when a fault corrupts the aof format. When Redis
restarts, it either ignores these entries when scanning the aof,
or recommends running the aof checker which truncates the
file to the last non-corrupted entry. A KeyCorruption and Val-
ueCorruption manifest when the fault is within the key or
value portion of the entry.

On CuttleFSbtrfs, Redis exhibits OldValue and KeyNot-
Found errors. These errors occur on App=Restart, regardless
of buffer-cache state. When Redis restarts, the entries are
missing from the aof as the file was reverted, and thus, the
insert or update operation is not applied.

LMDB: Lightning Memory-Mapped Database (LMDB) is
an embedded key-value store which uses B+Tree data struc-
tures whose nodes reside in a single file. The first two pages
of the file are metadata pages, each of which contain a trans-
action ID and the location of the root node. Readers always
use the metadata page with the latest transaction ID while
writers make changes and update the older metadata page.



LMDB uses a copy-on-write bottom-up strategy [13] for
committing write transactions. All new nodes from leaf to
root are written to unused or new pages in the file, followed by
an fsync. An fsync failure terminates the operation without
updating the metadata page and notifies the user. If fsync
succeeds, LMDB proceeds to update the old metadata page
with the new root location and transaction ID, followed by an-
other fsync.8 If fsync fails, LMDB writes an old transaction
ID to the metadata page in memory, preventing future readers
from reading it.

On CuttleFSext4o,xfs, LMDB exhibits FalseFailures. When
LMDB writes the metadata page, it only cares about the trans-
action ID and new root location, both of which are contained
in a single sector. Thus, even though the sector is persisted to
disk, failures in the seven other sectors of the metadata page
can cause an fsync failure. As mentioned earlier, LMDB
writes an old transaction ID (say ID1) to the metadata page in
memory and reports a failure to the user. However, on Buffer-
Cache=Evict and App=Restart (such as a machine crash and
restart), ID1 is lost as it was only written to memory and not
persisted. Thus, readers read from the latest transaction ID
which is the previously failed transaction.

LMDB does not exhibit FalseFailures in CuttleFSext4d as
the immediate successful fsync results in a success to the
client. Instead, ValueCorruptions and OldValue errors occur
on BufferCache=Evict, regardless of whether the application
restarts or not. ValueCorruptions occur when a block con-
taining a part of the value experiences a fault. As LMDB
mmaps() the file and reads directly from the page cache,
BufferCache=Evict such as a page eviction leads to reading
the value of the faulted block from disk. OldVersion errors
occur when the metadata page experiences a fault. The file
system responds with a successful fsync initially (as data is
successfully stored in the ext4 journal). For a short time, the
metadata page has the latest transaction ID. However, when
the page is evicted, the metadata page reverts to the old trans-
action ID on disk, resulting in readers reading the old value.
KeyCorruptions do not occur as the maximum allowed key
size is 511B.

As CuttleFSbtrfs reports errors immediately, it does not
face the problems seen in CuttleFSext4d. FalseFailures do not
occur as the file is reverted to its previous consistent state.
We observe this same pattern in many of the applications and
omit them from the rest of the discussion unless relevant.

LevelDB: LevelDB is a widely used key-value store based
on LSM trees. It stores data internally using MemTables and
SSTables [33]. Additionally, LevelDB writes operations to a
log file before updating the MemTable. When a MemTable
reaches a certain size, it becomes immutable and is written
to a new file as an SSTable. SSTables are always created

8To be precise, LMDB does not do a write followed by an fsync for
metadata page updates. Instead, it uses a file descriptor that is opened in
O_SYNC mode. On a write, only the metadata page is flushed to disk. On
failure, it uses a normal file descriptor.

and never modified in place. On a restart, if a log file exists,
LevelDB creates an SSTable from its contents.

We configure LevelDB to fsync the log after every
write, for stronger durability guarantees. If fsync fails, the
MemTable is not updated and the user is notified about the
failure. If fsync fails during SSTable creation, the operation
is cancelled and the SSTable is left unused.

On CuttleFSext4o,xfs, as seen in Table 2, LevelDB exhibits
FalseFailures only on App=Restart with BufferCache=Keep.
When LevelDB is notified of fsync failure to the log file, the
user is notified of the failure. However, on restart, since the
log entry is in the page cache, LevelDB includes it while cre-
ating an SSTable from the log file. Read operations from this
point forward return the new value, reflecting FalseFailures.
FalseFailures do not occur on BufferCache=Evict as LevelDB
is able to detect invalid entries through CRC checksums [33].
Faults in the SSTable are detected immediately and do not
cause any errors as the newly generated SSTable is not used
by LevelDB in case of a failure.

On CuttleFSext4d, LevelDB exhibits KeyNotFound and Old-
Version errors when faults occur in the log file. When insert-
ing a key-value pair, fsync returns successfully, allowing
future read operations to return the new value. However, on
BufferCache=Evict and App=Restart, LevelDB rejects the
corrupted log entry and returns the old value for future read
operations. Depending on whether we insert a new or existing
key, we observe KeyNotFound or OldVersion errors when
the log entry is rejected. Additionally, LevelDB exhibits Key-
Corruption, ValueCorruption, and KeyNotFound errors for
faults that occur in the SSTables. Ext4 data mode may only
place the data in the journal and return a successful fsync.
Later, during checkpointing, the SSTable is corrupted due to
the fault. These errors manifest only on BufferCache=Evict,
either while the application is running or on restart, depending
on when the SSTable is read from disk.

SQLite: SQLite is an embedded RDBMS that uses BTree
data structures. A separate BTree is used for each table and in-
dex but all BTrees are stored in a single file on disk, called the
“main database file” (maindb). During a transaction, SQLite
stores additional information in a second file called the “roll-
back journal” (rj) or the “write-ahead log” (wal) depending
on which mode it is operating in. In the event of a crash or
restart, SQLite uses these files to ensure that committed or
rolled-back transactions are reflected in the maindb. Once
a transaction completes, these files are deleted. We perform
experiments for both modes.

SQLite RollBack: In rollback journal mode, before
SQLite modifies its user-space buffers, it writes the original
contents to the rj. On commit, the rj is fsyncd. If it succeeds,
SQLite writes a header to the rj and fsyncs again (2 fsyncs
on the rj). If a fault occurs at this point, only the state in the
user-space buffers need to be reverted. If not, SQLite pro-
ceeds to write to the maindb so that it reflects the state of
the user-space buffers. maindb is then fsyncd. If the fsync



fails, SQLite needs to rewrite the old contents to the maindb
from the rj and revert the state in its user-space buffers. After
reverting the contents, the rj is deleted.

On CuttleFSext4o,xfs, SQLite Rollback exhibits FalseFail-
ures and ValueCorruptions on BufferCache=Evict, regardless
of whether the application restarts or not. When faults occur
in the rj, SQLite chooses to revert in-memory state using
the rj itself as it contains just enough information for a roll-
back of the user-space buffers. This approach works well as
long as the latest contents are in the page cache. However,
on BufferCache=Evict, when SQLite reads the rj to rollback
in-memory state, the rj does not contain the latest write. As
a result, SQLite’s user-space buffers can still have the new
contents (FalseFailure) or a corrupted value, depending on
where the fault occurs.

SQLite Rollback exhibits FalseFailures in CuttleFSext4d for
the same reasons mentioned above as the fsync failure is
caught on the second fsync to the rj. Additionally, due to the
late error reporting in CuttleFSext4d, SQLite Rollback exhibits
ValueCorruption and KeyNotFound errors when faults occur
in the maindb. SQLite sees a successful fsync after writing
data to the maindb and proceeds to delete the rj. However, on
App=Restart and BufferCache=Evict, the above mentioned
errors manifest depending on where the fault occurs.

On CuttleFSbtrfs, SQLite Rollback exhibits FalseFailures
for the same reasons mentioned above. However, they occur
irrespective of whether buffer-cache state changes due to the
fact that the contents in the rj are reverted. As there is no data
in the rj to recover from, SQLite leaves the user-space buffers
untouched. ValueCorruptions cannot occur as no attempt is
made to revert the in-memory content.

SQLite WAL: Unlike SQLite Rollback, changes are writ-
ten to a write-ahead log (wal) on a transaction commit. SQLite
calls fsync on the wal and proceeds to change in-memory
state. If fsync fails, SQLite immediately returns a failure to
the user. If SQLite has to restart, it rebuilds state from the
maindb first and then changes state according to the entries
in the wal. To ensure that the wal does not grow too large,
SQLite periodically runs a Checkpoint Operation to modify
maindb with the contents from the wal.

On CuttleFSext4o,xfs, as seen in Table 2, SQLite WAL
exhibits FalseFailures only on App=Restart with Buffer-
Cache=Keep, for reasons similar to LevelDB. It reads valid
log entries from the page cache even though they might be
invalid due to faults on disk.

On CuttleFSext4d, SQLite WAL exhibits ValueCorruption
and KeyNotFound Errors when there are faults in the maindb
during a Checkpoint Operation for the same reasons men-
tioned in SQLite Rollback.

PostgreSQL: PostgreSQL is an object-relational database
system that maintains one file per database table. On startup,
it reads the on-disk tables and populates user-space buffers.
Similar to SQLite WAL, PostgreSQL reads entries from the
write-ahead log (wal) and modifies user-space buffers accord-

ingly. Similar to SQLite WAL, PostgreSQL runs a checkpoint
operation, ensuring that the wal does not grow too large. We
evaluate two configurations of PostgreSQL: the default con-
figuration and a DirectIO configuration.

PostgreSQL Default: In the default mode, PostgreSQL
treats the wal like any other file, using the page cache for
reads and writes. PostgreSQL notifies the user of a successful
commit operation only after an fsync on the wal succeeds.
During a checkpoint, PostgreSQL writes data from its user-
space buffers into the table and calls fsync. If the fsync fails,
PostgreSQL, aware of the problems with fsync [8], chooses
to crash. Doing so avoids truncating the wal and ensures that
checkpointing can be retried later.

On CuttleFSext4o,xfs, PostgreSQL exhibits FalseFailures for
reasons similar to LevelDB. While App=Restart is neces-
sary to read the entry from the log, BufferCache=Evict is
not. Further, the application restart cannot be avoided as Post-
greSQL intentionally crashes on an fsync failure. On Buffer-
Cache=Keep, PostgreSQL reads a valid log entry in the page
cache. On BufferCache=Evict, depending on which block
experiences the fault, PostgreSQL either accepts or rejects the
log entry. FalseFailures manifest when PostgreSQL accepts
the log entry. However, if the file system were to also crash
and restart, the page cache would match the on-disk state,
causing PostgreSQL to reject the log entry. Unfortunately,
ext4 currently does not behave as expected with mount op-
tions data_err=abort and errors=remount-ro (§3.3.1).

Due to the late error reporting in CuttleFSext4d, as seen
in Table 2, PostgreSQL exhibits OldVersion and KeyNot-
Found Errors when faults occur in the database table files. As
PostgreSQL maintains user-space buffers, these errors man-
ifest only on BufferCache=Evict with App=Restart. During
a checkpoint operation, PostgreSQL writes the user-space
buffers to the table. As the fault is not yet reported, the op-
eration succeeds and the wal is truncated. If the page corre-
sponding to the fault is evicted and PostgreSQL restarts, it
will rebuild its user-space buffers using an incorrect on-disk
table file. The errors are exhibited depending on where the
fault occurs. While KeyNotFound errors occur in other appli-
cations when a new key is inserted, PostgreSQL loses existing
keys on updates as it modifies the table file in-place.

PostgreSQL DIO: In the DirectIO mode, PostgreSQL by-
passes the page cache and writes to the wal using DirectIO.
The sequence of operations during a transaction commit and
a checkpoint are exactly the same as the default mode.

FalseFailures do not occur as the page cache is bypassed.
However, OldVersion and KeyNotFound errors still occur in
CuttleFSext4d for the same reasons mentioned above as writes
to the database table files do not use DirectIO.

5 Discussion
We now present a set of observations and lessons for han-

dling fsync failures across file systems and applications.



#1: Existing file systems do not handle fsync failures uni-
formly. In an effort to hide cross-platform differences, POSIX
is intentionally vague on how failures are handled. Thus, dif-
ferent file systems behave differently after an fsync failure
(as seen in Table 1), leading to non-deterministic outcomes
for applications that treat all file systems equally. We believe
that the POSIX specification for fsync needs to be clarified
and the expected failure behavior described in more detail.

#2: Copy-on-Write file systems such as Btrfs handle fsync
failures better than existing journaling file systems like
ext4 and XFS. Btrfs uses new or unused blocks when writing
data to disk; the entire file system moves from one state to
another on success and no in-between states are permitted.
Such a strategy defends against corruptions when only some
blocks contain newly written data. File systems that use copy-
on-write may be more generally robust to fsync failures
than journaling file systems.

#3: Ext4 data mode provides a false sense of durability. Ap-
plication developers sometimes choose to use a data journal-
ing file system despite its lower performance because they
believe data mode is more durable [11]. Ext4 data mode
does ensure data and metadata are in a “consistent state”,
but only from the perspective of the file system. As seen in
Table 2, application-level inconsistencies are still possible.
Furthermore, applications cannot determine whether an error
received from fsync pertains to the most recent operation or
an operation sometime in the past. When failed intentions are
a possibility, applications need a stronger contract with the
file system, notifying them of relevant context such as data in
the journal and which blocks were not successfully written.

#4: Existing file-system fault-injection tests are devoid of
workloads that continue to run post failure. While all file
systems perform fault-injection tests, they are mainly to en-
sure that the file system is consistent after encountering a
failure. Such tests involve shutting down the file system soon
after a fault and checking if the file system recovers correctly
when restarted. We believe that file-system developers should
also test workloads that continue to run post failure, and see
if the effects are as intended. Such effects should then be
documented. File-system developers can also quickly test the
effect on certain characteristics by running those workloads
on CuttleFS before changing the actual file system.

#5: Application developers write OS-specific code, but are
not aware of all OS-differences. The FreeBSD VFS layer
chooses to re-dirty pages when there is a failure (except when
the device is removed) [6] while Linux hands over the failure
handling responsibility to the individual file systems below
the VFS layer (§3.3.4). We hope that the Linux file-system
maintainers will adopt a similar approach in an effort to han-
dle fsync failures uniformly across file systems. Note that
it is also important to think about when to classify whether a
device has been removed. For example, while storage devices
connected over a network aren’t really as permanent as local

hard disks, they are more permanent than removable USB
sticks. Temporary disconnects over a network need not be per-
ceived as device removal and re-attachment; pages associated
with such a device can be re-dirtied on write failure.
#6: Application developers do not target specific file sys-
tems. We observe that data-intensive applications configure
their durability and error-handling strategies according to the
OS they are running on, but treat all file systems on a specific
operating system equally. Thus, as seen in Table 2, a single
application can manifest different errors depending on the
file system. If the POSIX standard is not refined, applications
may wish to handle fsync failures on different file systems
differently. Alternatively, applications may choose to code
against failure handling characteristics as opposed to specific
file systems, but this requires file systems to expose some
interface to query characteristics such as “Post Failure Page
State/Content” and “Immediate/Delayed Error Reporting”.
#7: Applications employ a variety of strategies when fsync
fails, but none are sufficient. As seen in Section 4.3, Redis
chooses to trust the file system and does not even check fsync
return codes, LMDB, LevelDB, and SQLite revert in-memory
state and report the error to the application while PostgreSQL
chooses to crash. We have seen that none of the applications
retry fsync on failure; application developers appear to be
aware that pages are marked clean on fsync failure and an-
other fsync will not flush additional data to disk. Despite the
fact that applications take great care to handle a range of errors
from the storage stack (e.g., LevelDB writes CRC Checksums
to detect invalid log entries and SQLite updates the header
of the rollback journal only after the data is persisted to it),
data durability cannot be guaranteed as long as fsync errors
are not handled correctly. While no one strategy is always
effective, the approach currently taken by PostgreSQL to use
direct IO may best handle fsync failures. If file systems do
choose to report failure handling characteristics in a standard
format, applications may be able to employ better strategies.
For example, applications can choose to keep track of dirtied
pages and re-dirty them by reading and writing back a single
byte if they know that the page content is not reverted on
failure (ext4, XFS). On Btrfs, one would have to keep track
of the page as well as its content. For applications that access
multiple files, it is important to note that the files can exist on
different file systems.
#8: Applications run recovery logic that accesses incorrect
data in the page cache. Applications that depend on the page
cache for faster recovery are susceptible to FalseFailures. As
seen in LevelDB, SQLite, and PostgreSQL, when the wal
incurs an fsync failure, the applications fail the operation
and notify the user; In these cases, while the on-disk state
may be corrupt, the entry in the page cache is valid; thus,
an application that recovers state from the wal might read
partially valid entries from the page cache and incorrectly
update on-disk state. Applications should read the on-disk
content of files when performing recovery.



#9: Application recovery logic is not tested with low level
block faults. Applications test recovery logic and possibili-
ties of data loss by either mocking system call return codes
or emulating crash-restart scenarios, limiting interaction with
the underlying file system. As a result, failure handling logic
by the file system is not exercised. Applications should test
recovery logic using low-level block injectors that force under-
lying file-system error handling. Alternatively, they could use
a fault injector like CuttleFS that mimics different file-system
error-handling characteristics.

6 Related Work
In this section, we discuss how our work builds upon and

differs from past studies in key ways. We include works that
study file systems through fault injection, error handling in file
systems, and the impact of file-system faults on applications.

Our study on how file systems react to failures is related to
work done by Prabhakaran et al. with IRON file systems [49]
and a more recent study conducted by Jaffer et al. [40]. Other
works study specific file systems such as NTFS [28] and
ZFS [58]. All these studies inject failures beneath the file
system and analyze if and how file systems detect and recover
from them. These studies use system-call workloads (e.g.,
writes and reads) that make the file system interact with the
underlying device.

While prior studies do exercise some portions of the fsync
path through single system-call operations, they do not ex-
ercise the checkpoint path. More importantly, in contrast to
these past efforts, our work focuses specifically on the in-
memory state of a file system and the effects of future op-
erations on a file system that has encountered a write fault.
Specifically, in our work, we choose workloads that continue
after a fault has been introduced. Such workloads help in
understanding the after-effects of failures during fsync such
as masking of errors by future operations, fixing the fault, or
exacerbating it.

Mohan et al. [45] use bounded black-box crash testing to
exhaustively generate workloads and discover many crash-
consistency bugs by simulating power failures at different
persistence points. Our work focuses on transient failures that
may not necessarily cause a file system to crash and the effect
on applications even though a file system may be consistent.
Additionally, we inject faults in the middle of an fsync as
opposed to after a successful fsync (persistence point).

Gunawi et al. describe the problem of failed intentions [36]
in journaling file systems and suggest chained transactions to
handle such faults during checkpointing. Another work de-
velops a static-analysis technique named Error Detection and
Propagation [37] and conclude that file systems neglect many
write errors. Even though the Linux kernel has improved its
block-layer error handling [10], file systems may still neglect
write errors. Our results are purely based on injecting errors
in bio requests that the file system can detect.

Vondra describes how certain assumptions about fsync

behavior led to data loss in PostgreSQL [55]. The data loss
behavior was reproduced using a device mapper with the dm-
error target which inspired us to build our own fault injector
(dm-loki [4]) atop the device mapper, similar to dm-inject [40].
Additionally, the FSQA suite (xfstests) [7] emulates write er-
rors using the dm-flakey target [5]. While dm-flakey is useful
for fault-injection testing, faults are injected based on current
time; the device is available for x seconds and then exhibits
unreliable behavior for y seconds (x and y being configurable).
Furthermore, any change in configuration requires suspend-
ing the device. To increase determinism and avoid relying on
time, dm-loki injects faults based on access patterns (e.g., fail
the 2nd and 4th write to block 20) and is capable of accepting
configuration changes without device suspension.

Recent work has shifted the focus to study the effects of
file-system faults in distributed storage systems [34] and high-
performance parallel systems [29]. Similarly, our work fo-
cuses on understanding how file systems and applications
running on top of them behave in the presence of failures.

7 Conclusions
We show that file systems behave differently on fsync

failure. Application developers can only assume that the un-
derlying file system experienced a fault and that data may
have either been persisted partially, completely, or not at all.
We show that applications assuming more than the above
are susceptible to data loss and corruptions. The widely per-
ceived crash-restart fix in the face of fsync failures does not
always work; applications recover incorrectly due to on-disk
and in-memory mismatches.

However, we believe that applications can provide stronger
guarantees if file systems are more uniform in their failure
handling and error reporting strategies. Applications that care
about durability should include sector- or block-level fault-
injection tests to effectively test recovery code paths. Alterna-
tively, such applications can choose to use CuttleFS to inject
faults and mimic file system failure reactions.

We have open sourced CuttleFS at https://github.com/
WiscADSL/cuttlefs along with the device-mapper kernel
module and experiments to reproduce the results in this paper.
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