
12

Can Applications Recover from fsync Failures?

ANTHONY REBELLO and YUVRAJ PATEL, University of Wisconsin–Madison, USA

RAMNATTHAN ALAGAPPAN, VMware Research Group, USA

ANDREA C. ARPACI-DUSSEAU and REMZI H. ARPACI-DUSSEAU, University of

Wisconsin–Madison, USA

We analyze how file systems and modern data-intensive applications react to fsync failures. First, we charac-

terize how three Linux file systems (ext4, XFS, Btrfs) behave in the presence of failures. We find commonalities

across file systems (pages are always marked clean, certain block writes always lead to unavailability) as well

as differences (page content and failure reporting is varied). Next, we study how five widely used applica-

tions (PostgreSQL, LMDB, LevelDB, SQLite, Redis) handle fsync failures. Our findings show that although

applications use many failure-handling strategies, none are sufficient: fsync failures can cause catastrophic

outcomes such as data loss and corruption. Our findings have strong implications for the design of file systems

and applications that intend to provide strong durability guarantees.

CCS Concepts: • Software and its engineering → File systems management; • General and reference

→ Reliability; • Computer systems organization → Reliability; • Software and its engineering →

Software fault tolerance; • Information systems → Database recovery;

Additional Key Words and Phrases: Durability, persistence, fsync failures, fsync, file system

ACM Reference format:

Anthony Rebello, Yuvraj Patel, Ramnatthan Alagappan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. 2021. Can Applications Recover from fsync Failures? ACM Trans. Storage 17, 2, Article 12 (June

2021), 30 pages.

https://doi.org/10.1145/3450338

1 INTRODUCTION

Applications that care about data must care about how data is written to stable storage. Issuing a
series of write system calls is insufficient. A write call only transfers data from application mem-
ory into the operating system; the OS usually writes this data to disk lazily, improving performance
via batching, scheduling, and other techniques [28, 48, 57, 58].

Ramnatthan Alagappan work done while at University of Wisconsin-Madison.

We thank our sponsors: VMware, Intel, Seagate, and Samsung, for their generous support. This material was also supported

by funding from NSF under award numbers CNS-1421033, CNS-1763810, and CNS-1838733, and DOE DE-SC0014935. Any

opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of NSF, DOE, or any other institutions.

Authors’ addresses: A. Rebello, Y. Patel, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, University of Wisconsin–

Madison, Department of Computer Sciences, Madison, WI, 53706; emails: arebello@wisc.edu, {yuvraj, dusseau,

remzi}@cs.wisc.edu; R. Alagappan, VMware Research Group, Madison, WI, 53706; email: ralagappan@vmware.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1553-3077/2021/06-ART12 $15.00

https://doi.org/10.1145/3450338

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

https://doi.org/10.1145/3450338
mailto:permissions@acm.org
https://doi.org/10.1145/3450338

12:2 A. Rebello et al.

To update persistent data correctly in the presence of failures, the order and timing of flushes
to stable storage must be controlled by the application. Such control is usually made available to
applications in the form of calls to fsync [9, 51], which forces unwritten (“dirty”) data to disk
before returning control to the application. Most update protocols, such as write-ahead logging or
copy-on-write, rely on forcing data to disk in particular orders for correctness [33, 34, 38, 41, 50,
61].

Unfortunately, recent work has shown that the behavior of fsync during failure events is ill-
defined [60] and error prone. Some systems, for example, mark the relevant pages clean upon
fsync failure, even though the dirty pages have not yet been written properly to disk. Simple
application responses, such as retrying the failed fsync, will not work as expected, leading to
potential data corruption or loss.

In this article, we ask and answer two questions related to this critical problem. The first question
(Section 3) relates to the file system itself: Why does fsync sometimes fail, and what is the effect
on file-system state after the failure event?

To answer this first question, we run carefully crafted micro-workloads on important and pop-
ular Linux file systems (ext4 [47], XFS [59], Btrfs [55]) and inject targeted block failures in the I/O
stream using dm-loki—our custom built device-mapper target for deterministic fault injection. We
then use blockviz—a block trace visualization tool that enriches block access patterns with file-
system specific information to examine the results. We provide the traces generated by blockviz
to serve as reference for current file system error-handling behavior. Our findings show common-
alities across file systems as well as differences. For example, all three file systems mark pages
clean after fsync fails, rendering techniques such as application-level retry ineffective. However,
the content in said clean pages varies depending on the file system; ext4 and XFS contain the latest
copy in memory, while Btrfs reverts to the previous consistent state. Failure reporting is varied
across file systems; for example, ext4 data mode does not report an fsync failure immediately
in some cases, instead (oddly) failing the subsequent call. Failed updates to some structures (e.g.,
journal blocks) during fsync reliably lead to file-system unavailability. And finally, other poten-
tially useful behaviors are missing; for example, none of the file systems alert the user to run a
file-system checker after the failure.

The second question we ask is (Section 4): How do important data-intensive applications react
to fsync failures? To answer this question, we build CuttleFS, a FUSE file system that can emulate
different file system fsync failures. CuttleFS maintains its own page cache in user-space mem-
ory, separate from the kernel page cache, allowing application developers to perform durability
tests against characteristics of different file systems, without interference from the underlying file
system and kernel.

With this test infrastructure, we examine the behavior of five widely used data-management
applications: Redis [21], LMDB [18], LevelDB [13], SQLite [23] (in both RollBack [1] and WAL
modes [24]), and PostgreSQL [18] (in default and DirectIO modes). Our findings, once again, con-
tain both specifics per system, as well as general results true across some or all. Some applications
(Redis) are surprisingly careless with fsync, not even checking its return code before returning
success to the application-level update; the result is a database with old, corrupt, or missing keys.
Other applications (LMDB) exhibit false-failure reporting, returning an error to users even though
on-disk state is correct. Many applications (Redis, LMDB, LevelDB, SQLite) exhibit data corrup-
tions; for example, SQLite fails to write data to its rollback journal and corrupts in-memory state
by reading from said journal when a transaction needs to be rolled back. While corruptions can
cause some applications to reject newly inserted records (Redis, LevelDB, SQLite), both new and
old data can be lost on updates (PostgreSQL). Finally, applications (LevelDB, SQLite, PostgreSQL)
sometimes seemingly work correctly as long as the relevant data remains in the file-system cache;

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

Handling fsync Failures 12:3

when said data is purged from the cache (due to cache pressure or OS restart), however, the appli-
cation then returns stale data (as retrieved from disk).

We also draw high-level conclusions that take both file-system and application behavior into
account. We find that applications expect file systems on an OS platform (e.g., Linux) to behave
similarly, and yet file systems exhibit nuanced and important differences. We also find that appli-
cations employ numerous different techniques for handling fsync failures, and yet none are (as
of today) sufficient; even after the PostgreSQL fsync problem was reported [60], no application
yet handles its failure perfectly. We also determine that application recovery techniques often rely
upon the file-system page cache, which does not reflect the persistent state of the system and can
lead to data loss or corruption; applications should ensure recovery protocols only use existing
persistent (on-disk) state to recover. Finally, in comparing ext4 and XFS (journaling file systems)
with Btrfs (copy-on-write file system), we find that the copy-on-write strategy seems to be more
robust against corruptions, reverting to older states when needed.

The rest of this article is organized as follows: First, we motivate why this study is necessary
(Section 2), followed by a file-system study (Section 3). Next, we study how applications react to
fsync failures (Section 4). We then discuss the implications of our findings (Section 5), discuss
related work (Section 6), and conclude (Section 7).

2 MOTIVATION

Applications that manage data must ensure that they can handle and recover from any fault that
occurs in the storage stack. Recently, a PostgreSQL user encountered data corruption after a stor-
age error and PostgreSQL played a part in that corruption [20]. Because of the importance and
complexity of this error, we describe the situation in detail.

PostgreSQL is an RDBMS that stores tables in separate files and uses a write-ahead log (wal)

to ensure data integrity [19]. On a transaction commit, the entry is written to the log and the
user is notified of the success. To ensure that the log does not grow too large (as it increases
startup time to replay all entries in the log), PostgreSQL periodically runs a checkpoint opera-
tion to flush all changes from the log to the different files on disk. After an fsync is called on
each of the files, and PostgreSQL is notified that everything was persisted successfully, the log is
truncated.

Of course, operations on persistent storage do not always complete successfully. Storage devices
can exhibit many different types of partial and transient failures, such as latent sector errors [30,
44, 56], corruptions [29], and misdirected writes [46]. These device faults are propagated through
the file system to applications in a variety of ways [43, 53], often causing system calls such as read,
write, and fsync to fail with a simple return code.

When PostgreSQL was notified that fsync failed, it retried the failed fsync. Unfortunately, the
semantics for what should happen when a failed fsync is retried are not well defined. While POSIX
aims to standardize behavior, it only states that outstanding IO operations are not guaranteed to
have been completed in the event of failures during fsync [17]. As we shall see, on many Linux file
systems, data pages that fail to be written are simply marked clean in the page cache when fsync
is called and fails. As a result, when PostgreSQL retried the fsync a second time, there were no
dirty pages for the file system to write, resulting in the second fsync succeeding without actually
writing data to disk. PostgreSQL assumed that the second fsync persisted data and continued to
truncate the write-ahead log, thereby losing data. PostgreSQL had been using fsync incorrectly
for 20 years [60].

After identifying this intricate problem, developers changed PostgreSQL to respond to the
fsync error by crashing and restarting without retrying the fsync. Thus, on restart, PostgreSQL
rebuilds state by reading from the wal and retrying the entire checkpoint process. The hope and

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

12:4 A. Rebello et al.

intention is that this crash-and-restart approach will not lose data. Many other applications such
as WiredTiger/MongoDB [27] and MySQL [3] followed suit in fixing their fsync retry logic.

This experience leads us to ask a number of questions. As application developers are not certain
about the underlying file-system state on fsync failure, the first part of our study answers what
happens when fsync fails. How do file systems behave after they report that an fsync has failed?
Do different Linux file systems behave in the same way? What can application developers assume
about the state of their data after an fsync fails? Thus, we perform an in-depth study into the
fsync operation for multiple file systems.

The second part of our study looks at how data-intensive applications react to fsync failures.
Does the PostgreSQL solution indeed work under all circumstances and on all file systems? How
do other data-intensive applications react to fsync failures? For example, do they retry a failed
fsync, avoid relying on the page cache, crash and restart, or employ a different failure-handling
technique? Overall, how well do applications handle fsync failures across diverse file systems?

3 FILE SYSTEM STUDY

Our first study explores how file systems behave after reporting that an fsync call has failed. After
giving a brief background of caching in file systems, we describe our methodology and our findings
for the three Linux file systems.

3.1 Background

File systems provide applications with open, read, and write system calls to interact with the
underlying storage media. Since block devices such as hard disks and solid state drives are much
slower than main memory [63], the operating system maintains a page cache of frequently used
pages of files in kernel space in main memory.

When an application calls read, the kernel first checks if the data is in the page cache. If not, then
the file system retrieves the data from the underlying storage device and stores it in the page cache.
When an application calls write, the kernel only dirties the page in memory while notifying the
application that the write succeeded; there is now a mismatch between the data in memory and on
the device and data can potentially be lost. For durability, the file system periodically synchronizes
content between memory and disk by flushing dirty pages and marking them clean. Applications
that require stronger durability guarantees can force the dirty pages to disk using the fsync system
call.

Applications can choose to bypass the page cache altogether by opening files with O_DIRECT
(DirectIO). For caching, applications must perform their own in user space. Calls to fsync are still
required, since data may be cached within the underlying storage media; an fsync issues a FLUSH
command to the underlying device so it pushes data all the way to stable storage.

3.2 Methodology

To understand how file systems should behave after reporting an fsync failure, we begin with the
available documentation. The fsync man pages [9] report that fsync may fail for many reasons:
the underlying storage medium has insufficient space (ENOSPC or EDQUOT), the file descriptor is
not valid (EBADF), or the file descriptor is bound to a file that does not support synchronization
(EINVAL). Since these errors can be discovered by validating input and metadata before initiating
write operations, we do not investigate them further.

We focus on errors that are encountered only after the file system starts synchronizing dirty
pages to disk; in this case, fsync signals an EIO error. EIO errors are difficult to handle, because
the file system may have already begun an operation (or changed state) that it may or may not be
able to revert.

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

Handling fsync Failures 12:5

To trigger EIO errors, we consider single, transient, write faults in line with the fail-partial fail-
ure model [52, 53]. When the file system sends a write request to the storage device, we inject a
fault for a single sector or block within the request. Specifically, we build a kernel module device-
mapper target called dm-loki that intercepts block-device requests from the file system and fails
a particular write request to a particular sector or block while letting all other requests succeed;
this allows us to observe the impact on an unmodified file system.

3.2.1 Workloads. To exercise the fsync path, we create three simple workloads that are repre-
sentative of common write patterns seen in data-intensive applications.

Single Block Update (wsu): Open an existing file containing three pages (12 KB) and modify
the middle page. This workload resembles many applications that modify the contents of existing
files: LMDB always modifies the first two metadata pages of its database file; PostgreSQL stores
tables as files on disk and modifies them in-place. Specifically, wsu issues system calls in the fol-
lowing sequence: open, lseek(4K), write(4K), fsync, fsync, sleep(40), close. The first fsync
forces the dirty page to disk. While one fsync is sufficient in the absence of failures, we are inter-
ested in the impact of fsync retries after a failure; therefore, wsu includes a second fsync. Finally,
since ext4, XFS, and Btrfs write out metadata and checkpoint the journal periodically, wsu includes
a sleep for 40 seconds.

Multi Block Append (wma): Open a file in append mode and write a page followed by an
fsync; writing and fsyncing is repeated after sleeping. This workload resembles many applications
that periodically write to a log file: Redis writes every operation that modifies its in-memory data
structures to an append only file; LevelDB, PostgreSQL, and SQLite write to a write-ahead-log and
fsync the file after the write. wma repeats these operations after a delay to allow checkpointing to
occur; this is realistic, as clients do not always write continuously and checkpointing may occur
in those gaps. Specifically, wma issues system calls in the following sequence: open (in append
mode), write(4K), fsync, sleep(40), write(4K), fsync, sleep(40), close.

Multi File Create (wd ir): Create a new file within a directory and then fsync both the file and
the directory. This workload resembles file creation in many applications that care about durabil-
ity. The ALICE framework [51] analyzes multiple applications and lists vulnerabilities that arise
from not issuing an fsync on the parent directory after creating and calling fsync on a file. wdir

repeats these operations after a delay to allow checkpointing to occur; a realistic scenario, as ap-
plications often create files periodically. Specifically, wdir issues system calls in the following
sequence: open(dir), creat(file1), fsync(file1), fsync(dir), sleep(40), creat(file2),
fsync(file2), fsync(dir), sleep(40), close(file1,file2,dir)1.

3.2.2 dm-loki. To study file system behavior on fsync failure, we require a tool that injects
failures deterministically. For example, always failing the ith write to a particular sector or block.
Additionally, as file systems may overwrite a block multiple times, capturing disk state before and
after an experiment is insufficient. We require the content of each read or write request. We built
dm-loki [4], a loadable kernel module device-mapper target, to satisfy both requirements.

Contrast with current fault injection device-mapper targets such as dm-error and
dm-flakey [5], dm-loki can change its fault injection configuration dynamically via messages
through the dmsetup message [15] interface. A user may start dm-loki without any failure points
and then send a message to the target to start failing certain sectors or blocks. Fault injection for
a particular block is expressed as character sequences where the index in the sequence is incre-
mented every time the block is written to. dm-loki decides to fail a particular access if the character
at the current index indicates failure. For example, the sequence string wwxxw describes a pattern

1We use the notation creat for conciseness, but we actually use the open system call with flags O_WRONLY | O_CREAT.

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

12:6 A. Rebello et al.

where the first two writes succeed, the third and fourth fail, and all writes after succeed. For a spe-
cific block or sector failure sequence, the lowercase letters w and x at an index i decide whether the
ith request is sent to the underlying device or failed. For accesses greater than the string length,
we refer the last character to decide.

A user may also enable or disable request logging using the dmsetup message interface.
dm-loki logs all read and write requests with associated data and flags to a file. Additionally,
a user may inject “tags” via messages that are also logged. Injecting tags with a system call name
and arguments right before its invocation allows us to identify the origin of each request. For ex-
ample, all requests immediately preceded by a 30-second sleep tag implied that the requests were
generated periodically for checkpointing.

3.2.3 blockviz. File systems need not treat all block write failures equally. Data block write
failures may not be treated the same way as metadata block write failures. Additionally, file systems
may treat different types of metadata differently. While dm-loki provides the functionality to
inject a failure and log all BIO requests, it has no file-system level context about the specific sector
or block. We build blockviz, an interactive Jupyter Notebook [45] widget in Python that takes
BIO requests logged by dm-loki as input and enriches them with file-system specific information.
We describe blockviz’s main features that help us in characterizing file-system behavior.
dm-loki’s ability to inject “tags” into the logs make it easier to visualize requests with blockviz.

In our workloads, before issuing a system call, we inject a “tag” to dm-loki, specifying the sys-
tem call and its arguments. blockviz visualizes the traces with tags, making it easier to identify
the origin of every BIO request. Furthermore, as an interactive widget, clicking a particular re-
quest provides more file system-specific information. Using a combination of existing tools such
as debugfs and xfs_db, and custom code to parse metadata blocks (such as XFS headers and Btrfs
tree nodes), blockviz provides more information about every block in the trace.

As a particular block may be read from or written to multiple times, blockviz allows a user to
compare different blocks in the trace. Since dm-loki logs all data read or written, blockviz creates
checksums of the data for fast searches; a useful feature when trying to match content written in a
journal block to content written to a metadata block during checkpointing. blockviz also allows
metadata specific comparisons such as highlighting differences between two inode table entries in
ext4 or identifying bitmap differences.

Figure 1 shows two sample traces from blockviz for ext4 ordered mode running wsu . We provide
interpretations for these traces as they are used frequently in our findings (Section 3.3).

Figure 1(a) can be read as follows:

1 open(/f1) triggers a read request for the root directory data block.
2 There are no BIO requests during write.
3 On fsync, the data block for /f1 is written to disk and the inode table is journaled.
4 There are no BIO requests during the second fsync.
5 During sleep, the journaled inode table is written to its actual location.
6 There are no BIO requests during close.

Figure 1(b) can be read as follows:

1–2 Same as Figure 1(a).
3 On fsync, the data block write for /f1 fails and nothing is journaled. The user is notified

of the failure through a syslog entry and fsync returns −1 with errno set to EIO.
4 The second fsync writes the inode table to the journal.

5–6 Same as Figure 1(a).

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

Handling fsync Failures 12:7

Fig. 1. Sample blockviz traces and how to interpret them:

The figure shows two sample traces from blockviz for wsu on ext4 ordered mode. The first (a) represents a

normal run without any failures while the second (b) contains a grey-shaded block indicating a write failure.

System calls are represented by their first letter (in boldfaced font): Open, Write, Fsync, Sleep, Close.

In some cases, a system call contains the file or directory path. As wsu opens file /f1, the first symbol is O/f1.

BIO read requests are depicted using circles ◦ and write requests with squares �. The letters within a BIO

request are file-system dependent and are explained when first used. In this blockviz ext4 trace:

Dir/ is the directory data block for the root(/) directory.

D/f1 is the data block for file /f1.

IT is a block that contains the inode table entry for /f1.

JIT is a journal block containing the inode table entry.

In workloads that have multiple data block writes such as wma , we use D’ for the data corresponding to the

second write system call.

Trace (b) contains a grey-shaded block � indicating that the write to data block D textsubscript/f1 failed.

It is followed by two bells that symbolize notifications:

EIO: The immediate left system call (the fsync) is failed and errno is set to EIO.

SYS: The error is written to syslog.

As seen at the end of trace (b), if the rest of the trace is similar to the trace without failures, then we use a

set of dots indicating an ellipsis.

For better readability, a dotted line (as seen below) separates this caption from the main text.

· ·
BIO request traces from blockviz contain too much low-level information. For instance, jour-

naling in ext4 ordered mode involves writing a journal descriptor block that describes the follow-
ing blocks, the actual block data to be journaled, a BIO flush request, and finally, a journal commit
block with the Force Unit Access (FUA) flag set. For simplicity and conciseness, our traces in
this article do not include the flush requests and BIO flags. For ext4 specifically, we also omit the
journal descriptor and commit blocks from the traces.

3.2.4 Experiment Overview. We run the workloads on three different file systems: ext4, XFS,
and Btrfs, with default mkfs and mount options. We evaluate both ext4 with metadata ordered
journaling (data=ordered) and full data journaling (data=journal). We use an Ubuntu OS with
Linux kernel version 5.2.11.

We run mkfs on loop devices. Since our workloads are small, the loop devices are backed by files
of size 1 GB (images). The images are created using the dd if=/dev/zero command to ensure
a clean initial zero state. The 1 GB size ensures that the block size of the file systems is 4 KB by
default.2 Since workloads wsu and wma require an existing file to operate on, we mount the file
system, create an existing file of required size, and unmount. The images are now considered ready
for the workloads.

For each file system and workload, we conduct experiments as follows:
We create a loop device (say, loop0) from the prepared image using the losetup [16] com-

mand. Then, using the dmsetup command, we set up a device-mapper device /dev/dm/lokidev
that forwards all requests to the dm-loki target. We then run the workload with no fault points
configured.

2A smaller file size can change the block size to 1 KB on ext4.

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

12:8 A. Rebello et al.

For each file system and workload, we first trace the block write access pattern. We then repeat
the workload multiple times, each time configuring the fault injector to fail the ith write access
to a given sector or block. We only fail a single block or sector within the block in each iteration.
We use blockviz to analyze the traces and SystemTap [25] to examine the state of relevant buffer
heads and pages associated with data or metadata in the file system.

3.2.5 Behavior Inference. We answer the following questions for each file system:
Basics of fsync Failures:

Q1 Which block (data, metadata, journal) failures lead to fsync failures?
Q2 Is metadata persisted if a data block fails?
Q3 Does the file system retry failed block writes?
Q4 Are failed data blocks marked clean or dirty in memory?
Q5 Does in-memory page content match what is on disk?

Failure Reporting:

Q6 Which future fsync will report a write failure?
Q7 Is a write failure logged in the syslog?

After Effects of fsync Failure:

Q8 Which block failures lead to file-system unavailability?
Q9 How does unavailability manifest? Does the file system shutdown, crash, or remount in

read-only mode?
Q10 Does the file suffer from holes or block overwrite failures? If so, in which parts of a file can

they occur?3

Recovery:

Q11 If there is any inconsistency introduced due to fsync failure, can fsck detect and fix it?

3.3 Findings

We now describe our findings for the three file systems we have characterized: ext4, XFS, and Btrfs.
Our answers to our posed questions are summarized in Table 1.

3.3.1 Ext4. The ext4 file system is a commonly used journaling file system on Linux. The two
most common options when mounting this file system are data=ordered and data=journal, which
enable ext4 ordered mode and ext4 data mode, respectively. Ext4 ordered mode writes metadata
to the journal, whereas ext4 data mode writes both data and metadata to the journal.

Ext4 ordered mode: We give an overview of ext4 ordered mode by describing how it behaves
for our three representative workloads when no failures occur.

Single Block Update (wsu). When no fault is injected and fsync is successful, ext4 ordered
mode behaves as follows: During the write (Step 1), ext4 updates the page in the page cache with
the new contents and marks the page dirty. On fsync, the page is written to a data block; after
the data-block write completes successfully, the metadata (i.e., the inode with a new modification
time) is written to the journal, and fsync returns 0 indicating success (Step 2). After the fsync, the
dirty page is marked clean and contains the newly written data. On the second fsync, as there are

3In file-system terminology, a hole is a region in a file for which there is no block allocated. If a block is allocated but not

overwritten with the new data, then we consider the file to have a non-overwritten block and suffer from block overwrite

failure.

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

Handling fsync Failures 12:9

Table 1. Behavior of Various File Systems When fsync Fails

The table summarizes the behavior of the three file systems: ext4, XFS, and Btrfs, according to the questions posed in

Section 3.2.5. The questions are divided into four categories mentioned at the top. For questions that require identifying

a block type, we use the following abbreviations: Data Block (data), Journal Block (jrnl), Metadata Block (meta). In Q9,

Remount-ro denotes remounting in read-only mode. In Q10, “anywhere” and “within” describe the locations of the holes

or non-overwritten blocks (NOB); “within” does not include the end of the file. Entries with a superscript denote a problem.

no dirty pages, no block writes occur, and as there are no errors, fsync returns 0 (Step 3). During
sleep, the metadata in the journal is checkpointed to its final in-place block location (Step 4). No
writes or changes in page state occur during the close (Step 5). The trace for this experiment can
be seen in Figure 2(a).

If fsync fails (i.e., returns −1 with errno set to EIO), then a variety of write problems could have
occurred. For example, the data-block write could have failed (trace in Figure 2(b)); if this happens,
then ext4 does not write the metadata to the journal. However, the updated page is still marked
clean and contains the newly written data from Step 1, causing a discrepancy with the contents
on disk. Furthermore, even though the inode table was not written to the journal at the time of
the data fault, the inode table containing the updated modification time is written to the journal
on the second fsync in Step 3. Steps 4 and 5 are the same as above, and thus the inode table is
checkpointed.

Thus, applications that read this data block while the page remains in the page cache (i.e., the
page has not been evicted and the OS has not been rebooted) will see the new contents of the data;
however, when the page is no longer in memory and must be read from disk, applications will see
the old contents.

Alternatively, if fsync failed, then it could be because a write to one of the journal blocks failed
(trace in Figure 2(c)). In this case, ext4 aborts the journal transaction and remounts the file system
in read-only mode, causing all future writes to fail.

Multi Block Append (wma). This next workload exercises additional cases in the fsync error
path. If there are no errors and all fsyncs are successful (trace in Figure 3(a)), then the multi-block
append workload on ext4 behaves as follows: First, during write, ext4 creates a new page with
the new contents and marks it dirty (Step 1). On fsync, the page is written to a newly allocated
on-disk data block; after the data-block write completes successfully, the relevant metadata (i.e.,
both the inode table and the block bitmap) are written to the journal, and fsync returns success
(Step 2). As in wsu , the page is marked clean and contains the newly written data. During sleep,

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

12:10 A. Rebello et al.

Fig. 2. Blockviz traces for wsu on ext4 ordered mode:

The figure shows three traces corresponding to different fault injection configurations of dm-loki.

(a) when no faults are injected: open(/f1) triggers a read request for the directory data block /. On

fsync, the data block for /f1 is written to disk and the Inode Table (IT) is written to the Journal (JIT).

During sleep, the Inode Table is checkpointed.

(b) dm-loki configured to fail the data block write: On data block write failure, the error is logged to

syslog (SYS) and fsync fails with errno=EIO (EIO).

(c) dm-loki configured to fail the journal block write: On journal block write failure, in addition to

the syslog and EIO notifications, ext4 aborts the journal (Journal) and remounts in read-only mode

(ReadOnly).

The figure is also annotated with steps (the first horizontal row with lines and numbers) that are referred to

in the main text.

· ·

Fig. 3. Blockviz traces for wma on ext4 ordered mode:

The figure shows four traces corresponding to different fault injection configurations of dm-loki.

(a) when no faults are injected: Since wma involves appends, ext4 must allocate new blocks to the

inode. Allocation is done on fsync as ext4 ordered mode uses delayed allocation by default. To allocate

a block, the data block bitmap (BB) is read from disk if not already cached. While similar to wsu , an

fsync in wma involves writing both the inode table (IT) and the block bitmap (BB) to the journal and

later to their actual locations during checkpointing.

(b) dm-loki configured to fail the data block write: While the data block bitmap (BB) and inode table (IT)

are not journaled after data block failure, they are still journaled and written to disk during

checkpointing.

(c) dm-loki configured to fail the data block bitmap (BB) write: Failures during checkpointing are only

logged to syslog while checkpointing continues. A stale block bitmap is re-read from disk after bitmap

block failure.

(d) dm-loki configured to fail the inode table (IT) write: Unlike (c), inode tables are never read again from

disk despite failure.

· ·

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

Handling fsync Failures 12:11

the metadata is checkpointed to disk (Step 3); specifically, the inode contains the new modification
time and a link to the newly allocated block, and the block bitmap now indicates that the newly
allocated block is in use. The pattern is repeated for the second write (Step 4), fsync (Step 5),
and sleep (Step 6). As in wsu , there are no write requests or changes in page state during close
(Step 7).

An fsync failure could again indicate numerous problems. First, a write to a data block could
have failed in Step 2 (trace in Figure 3(b)). If this is the case, then the fsync fails and the page
is marked clean; as in wsu , the page cache contains the newly written data, differing from the
on-disk block that contains the original block contents. The inode table and block bitmap are first
journaled and then written to disk in Step 3; thus, even though the data itself has not been written,
the inode is modified to reference this block and the corresponding bit is set in the block bitmap.
When the workload writes another 4 KB of data in Step 4, this write continues oblivious of the
previous fault and Steps 5, 6, and 7 proceed as usual.

Thus, with a data-block failure, the on-disk file contains a non-overwritten block where it was
supposed to contain the data from Step 1. A similar possibility is that the write to a data block
in Step 5 fails; in this case, the file has a non-overwritten block at the end instead of somewhere
in the middle. Again, an application that reads any of these failed data blocks while they remain
in the page cache will see the newly appended contents; however, when any of those pages
are no longer in memory and must be read from disk, applications will read the original block
contents.

An fsync failure could also indicate that a write to a journal-block failed. In this case, as in
wsu , the fsync returns an error and the following write fails, since ext4 has been remounted in
read-only mode.

Because this workload contains an fsync after the metadata has been checkpointed in Step 3,
it also illustrates the impact of faults when checkpointing the inode table and block bitmap. We
find that ext4 reacts differently to block bitmap and inode table write failures (traces in Figures 3
(c) and (d)). In both cases, the failure is only logged to syslog, checkpointing proceeds to write
other metadata, and the following fsync does not return an error. However, when ext4 fails to
write the block bitmap, it marks the associated buffer head !uptodate, indicating that a future
read must first retrieve the on-disk contents. On fsync in Step 5 (or write in Step 4 if there is no
delayed allocation), ext4 must query the block bitmap to allocate a new block, reloading the stale
on-disk block bitmap. With no more write failures, the fsync in Step 5 succeeds and checkpointing
proceeds to write the new block bitmap—a version where only the bit for the second block in the
file is set. The filesystem is now in an inconsistent state, with an inode pointing to a block whose
bit is not set in the bitmap. While fsck can fix this inconsistency, it has to run in force mode (fsck
-f), as ext4 incorrectly marks the filesystem clean on unmount.

We do not observe such inconsistencies with inode table write failures, as ext4 ignores the
!uptodate flag on inode table buffer heads. Despite being !uptodate, ext4 continues to read and
write to the latest in-memory inode table. Future successful writes to the on-disk inode table are
guaranteed to have all the changes.

We note that for none of these fsync and metadata checkpoint failures does ext4 ordered mode
recommend running the file system checker; furthermore, running the checker does not identify
or repair any of the preceding problems. Finally, future calls to fsync never retry previous data
writes that may have failed; neither are failed metadata writes during checkpointing. These results
for ext4 ordered mode are all summarized in Table 1.

The ext4 file system also offers functionality to abort the journal if an error occurs in a file data
buffer (mount option data_err=abort) and remount the file system in read-only mode on an error

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

12:12 A. Rebello et al.

Fig. 4. Blockviz traces for wdir on ext4 ordered mode:

The figure shows three traces corresponding to different fault injection configurations of dm-loki.

(a) when no faults are injected: Since wdir creates new inodes, when the first file is created (O/f1) the inode

bitmap (IB) is read from disk if not already in cache. We use C* to denote closing all open

file descriptors (/, /f1, and /f2).

(b) dm-loki configured to fail the directory data block write: A stale version of the directory data block is

read from disk (as seen after O/f2) if ext4 encounters a write failure during checkpointing for the

same block.

(c) dm-loki configured to fail the inode bitmap block (IB) write: A stale version of the inode bitmap is read

from disk, but ext4 fails the inode creation (O/f2), logging the error to syslog and setting errno to EIO.

· ·

(mount option errors=remount-ro). However, we observe that the results are identical with and
without the mount options.4

Multi File Create (wd ir). While wsu and wma address data-block, inode-table, and data-block-
bitmap failures, wdir exercises failures related to directory data blocks and inode bitmap blocks
(trace in Figure 4(a)). If there are no errors and all fsyncs are successful, then the multi-file create
workload on ext4 behaves as follows: First, during open(dir), the directory data block is read from
disk if not already cached (Step 1). Next, on creat(file1), to allocate a new inode, ext4 reads the
corresponding inode bitmap block from disk if not already cached (Step 2). Ext4 proceeds to modify
the following data structures and marks them dirty: inode bitmap for file1’s inode, inode table
entry for file1 and dir, dir’s directory data block that contains file1’s name-to-inode mapping. On
fsync(file1), the dirtied metadata is written to the journal and fsync(file1) returns success
(Step 3). Ext4 treats directory data blocks as metadata, so unlike wsu and wma , this workload
does not write data blocks to disk during an fsync. On fsync(dir), we observe no read or write
requests as dir is already synced during fsync(file1) (Step 4). During sleep, the metadata is
checkpointed to disk (Step 5); specifically, the inode bitmap has a previously cleared bit set, the
inode table entry for the directory has a new modification time and updated size, the inode table
entry for the file is initialized, and the directory data block has a new name-to-inode mapping. The
pattern is repeated for creat(file2) (Step 6), fsync(file2) (Step 7), fsync(dir), and sleep.
As in the previous two workloads, we observe no bio requests during close.

As fsync in Step 3 and Step 7 only involve journal-block writes, similar to wsu and wma , a block
write failure during fsync in wdir will always return an error and trigger a remount in read-only
mode.

Because this workload contains a sleep in Step 5, it also illustrates the impact of faults when
checkpointing the inode table, inode bitmap, and directory data block. Inode table failures behave
exactly as described for wma . Similar to block bitmap write failures, inode bitmap and directory
data block write failures both mark the associated buffer heads !uptodate and trigger a read of

4We verified our observations by reproducing them using standard Linux tools and have filed a bug report for the same [2].

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

Handling fsync Failures 12:13

Fig. 5. Blockviz trace for wma on ext4 data mode, data block failures:

Unlike ext4 ordered mode, data blocks are written to the journal during fsync (JD/f1
) and the data block

bitmap is read on write instead of fsync as delayed allocation is disabled. On data block write failure

during checkpointing, the error is logged to syslog. The second fsync writes the data and metadata from the

second write to the journal but fails the fsync call with errno set to EIO.

· ·

the stale on-disk version during creat(file2) in Step 6. However, directory data block failures
are problematic while inode bitmap failures are benign.

We find that files may disappear from directories even while the file system is running. After
a directory data block write failure during checkpointing (trace in Figure 4(b)), because of the
!uptodate flag, ext4 reads and modifies a stale version during create(file2); the in-memory
name-to-inode mapping for file1 is lost and the inode for file1 is an orphaned inode.5 Future calls
to readdir(dir) either directly or through the ls command will not contain file1. Although
ext4 does not prompt us to run a checker, running fsck -f can detect orphaned inodes and place
them in the lost+found directory. However, applications that encode information in the filename
still suffer data loss.

Since ext4 must refer to both the inode bitmap and inode table when allocating a new inode,
it detects the inconsistency and fails the system call. Additionally, to prevent further errors on
creat, ext4 locks the entire group described by the inode bitmap and recommends running fsck
to set the bit and unlock the group. This trace can be found in Figure 4(c).

Ext4 Data Mode: Ext4 data mode differs from ordered mode in that data blocks are first written
to the journal and then later checkpointed to their final in-place block locations.

As shown in Table 1, the behavior of fsync in ext4 data mode is similar to that in ext4 ordered
mode for most cases: For example, on a write error, pages may be marked clean even if they were
not written out to disk, the file system is remounted in read-only mode on journal failures, meta-
data failures are not reported by fsync, and files can end up with non-overwritten blocks in the
middle or end.

However, the behavior of ext4 data mode differs in one important scenario. Because data blocks
are first written to the journal and later to their actual block locations during checkpointing, the
first fsync after a write may succeed even if a data block will not be successfully written to its
permanent in-place location. As a result, a data-block fault causes the second fsync to fail instead
of the first; in other words, the error reporting by fsync is delayed due to a failed intention [39].
This trace can be seen in Figure 5.

3.3.2 XFS. XFS is a journaling file system that uses B-trees. Instead of performing physical
journaling like ext4, XFS journals logical entries for changes in metadata.

Figure 6(a) shows a trace of XFS without any failures for wsu . As shown in Table 1, from the
perspective of error reporting and fsync behavior, XFS is similar to that of ext4 ordered mode.
Specifically, failing to write data blocks (trace in Figure 6(b)) leads to fsync failure and the faulty
data pages are marked clean even though they contain new data that has not been propagated to
disk; as a result, applications that read this faulty data will see the new data only until the page
has been evicted from the page cache. Similarly, failing to write a journal block will cause fsync
failure (trace in Figure 6(c)), while failing to write a metadata block will not. XFS remains available
for reads and writes after data-block faults.

5Orphaned inodes are inodes that can never be accessed, as no directory points to them.

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

12:14 A. Rebello et al.

Fig. 6. Blockviz traces for wsu on XFS:

The figure shows three traces corresponding to different fault injection configurations of dm-loki.

(a) when no faults are injected: On open, XFS reads inode information from disk if not already cached

(IN); it includes directory entries. On fsync, like ext4, XFS writes the data block and then journals

metadata related to the changes. During a checkpoint, the inode information (IN) with updated mtime

is written to disk.

(b) dm-loki configured to fail the data block write: XFS immediately fails the fsync after a data block

failure. However, the updated mtime is journaled in the second fsync and checkpointed during

the sleep.

(c) dm-loki configured to fail the journal block write: On journal block failure, XFS fails the fsync and shuts

down the file system (XFS).

· ·

XFS handles fsync failures in a few ways that are different than ext4 ordered mode. First, on
a journal-block fault, XFS shuts down the file system entirely (Figure 6(c)) instead of merely re-
mounting in read-only mode; thus, all subsequent read and write operations fail. Second, XFS
retries metadata writes when it encounters a fault during checkpointing; the retry limit is deter-
mined by a value in /sys/fs/xfs/*/error/metadata/*/max_retries, but is infinite by default.
If the retry limit is exceeded, then XFS again shuts down the file system. We provide traces for
wma in Figure 7 to highlight the retries.

The multi-block append workload illustrates how XFS handles metadata when writes to related
data blocks fail. If the write to the first data block fails, then XFS writes no metadata to the journal
and fails the fsync immediately. When later data blocks are successfully appended to this file, the
metadata is updated, which creates a non-overwritten block in the file corresponding to the first
write. However, if no new data blocks are successfully appended, then the on-disk metadata is not
updated to reflect any of these last writes (i.e., the size of the file is not increased).6 Thus, while in
ext4 a failed write always causes a non-overwritten block, in XFS, non-overwritten blocks cannot
exist at the end of a file. However, for either file system, if the failed blocks remain in the page
cache, then applications can read those blocks regardless of whether they are in the middle or the
end of a file.

During checkpointing, since XFS either shuts down or retries writes on metadata failures, we
do not observe the same inconsistencies as described for ext4 when running the multi-file create
workload wdir .

3.3.3 Btrfs. Btrfs is a copy-on-write file system that avoids writing to the same block twice,
except for the superblock, which contains root-node information. Figure 8(a) provides a trace of
wsu without any failures along with a description of Btrfs’s data structures. At a high level, some
of the actions in Btrfs are similar to those in a journaling file system: Instead of writing to a journal,
Btrfs writes to a log tree to record changes when an fsync is performed; instead of checkpointing

6To be precise, the mtime and ctime of the file are updated, but not the size of the file. Additional experiments removed for

space confirm this behavior.

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

Handling fsync Failures 12:15

Fig. 7. Blockviz traces for wma on XFS:

The figure shows two traces corresponding to different fault injection configurations of dm-loki.

(a) when no faults are injected: Like ext4 ordered mode, XFS uses delayed allocation and must allocate

new blocks to the inode, since wma is appending to the file. Unlike ext4’s free space block bitmap,

XFS tracks free space for every allocation group (AG—groups of inodes) using two B+trees that need to

be read from disk if not cached. First, it reads the allocation group free space block (AGF) that contains

information about the B+trees. Next, it reads the allocation group free list block (AGFL) that contains

pointers to free space for growing the B+trees. It then reads the two B+trees, and the first is sorted by

block number (B3B) to quickly find space closer to a given block. The second tracks space by size (B3C)

to quickly find free space of a given size. On fsync, the data block is written and the free space changes

are journaled along with the inode changes. During checkpointing, these changes are written to

their actual disk locations. Since the B+trees did not need to grow, there are no modifications to AGFL.

With no failures, the pattern repeats for the next write, fsync, and sleep.

(b) dm-loki configured to fail a metadata block during checkpointing: During checkpointing, XFS retries

the failed write to the allocation group free space block (AGF). The retry limit is configurable and

set to infinity by default. However, if the limit is reached, then XFS shuts down the file system and

recommends running fsck. While this trace shows faults for AGF, we observe similar behavior for

failures on B3B, B3C, and IN.

· ·

to fixed in-place locations, Btrfs writes to new locations and updates the roots in its superblock.
However, since Btrfs is based on copy-on-write, it has a number of interesting differences in how
it handles fsync failures compared to ext4 and XFS, as shown in Table 1.

Like ext4 ordered mode and XFS, Btrfs fails fsync when it encounters data-block faults (trace in
Figure 8(b)). However, unlike ext4 and XFS, Btrfs effectively reverts the contents of the data block
(and any related metadata) back to its old state (and marks the page clean). Thus, if an application
reads the data after this failure, then it will never see the failed operation as a temporary state. As
in the other file systems, Btrfs remains available after this data-block fault.

Similar to faults to the journal in the other file systems, faults to Btrfs’s log tree can result
in a failed fsync and a remount in read-only mode. However, as seen in Figure 8(c), Btrfs can
recover from log-tree failures by attempting a full-tree commit immediately after the failure (as
opposed to periodically during checkpointing). If the full-tree commit succeeds, then Btrfs ignores
the log-tree failure and returns success for fsync. However, if there were another failure during
the full-tree commit, then Btrfs would fail the fsync and remount in read-only mode. As Btrfs also
performs a full-tree commit periodically during checkpointing, unlike ext4 and XFS, faults during
checkpointing (trace in Figure 8(d)) result in a remount in read-only mode.

The multi-block append workload illustrates interesting behavior in Btrfs block allocation. If the
first append fails, then the state of the file system, including the B-tree that tracks all free blocks,
is reverted. However, the next append will continue to write at the (incorrectly) updated offset
stored in the file descriptor, creating a hole in the file. Since the state of the B-tree was reverted,
the deterministic block allocator will choose to allocate the same block again for the next append
operation. Thus, if the fault to that particular block was transient, then the next write and fsync
will succeed and there will simply be a one block hole in the file. If the fault to that particular block

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

12:16 A. Rebello et al.

Fig. 8. Blockviz traces for wsu on Btrfs:

The figure shows four traces corresponding to different fault injection configurations of dm-loki.

(a) when no faults are injected: In a copy-on-write file system like Btrfs, any modification to data or

metadata involves creating a copy of the modified nodes in the tree. To avoid too much redundant

I/O by forcing repeated copy-on-write for modified parts of the trees, Btrfs journals fsync-triggered

copy-on-writes to a log tree (LT). The super block (SB) is also updated, as it contains a reference to the

updated log tree root. During sleep, Btrfs checkpoints state by performing a full tree commit (FTC),

which involves writing all modified trees and deleting items from the log tree, followed by a write to the

superblock that contains references to all the tree roots.

(b) dm-loki configured to fail the data block write: On data block failure, Btrfs fails the fsync and reverts

state. Unlike ext4 and XFS, we observe no write requests during the second fsync. However,

the modification and reversal trigger an unnecessary full tree commit during sleep.

(c) dm-loki configured to fail a block write in the log tree: When Btrfs encounters a log tree write failure,

it logs the error to syslog and starts a full tree commit. Since we only fail one particular block,

the full tree commit succeeds and fsync does not fail. As there are no changes after the last full tree

commit, there are no write requests during sleep.

(d) dm-loki configured to fail a block write during a full tree commit: If Btrfs encounters a write failure

during a full tree commit, then it logs the error to syslog and remounts in read-only mode

(ReadOnly). We observe this behavior for any full tree commit, both periodically (in wsu , wma , wdir

during sleep) and triggered on log tree failures as seen in subfigure (c). When triggered due to log tree

failures, the fsync fails with errno set to EIO.

· ·

occurs multiple times, then future writes will continue to fail; as a result, Btrfs may cause more
holes within a file than ext4 and XFS. However, unlike ext4 and XFS, the file does not have block
overwrite failures.

During checkpointing, since Btrfs remounts in read-only mode on metadata write failures, we
do not observe the same inconsistencies as described for ext4 when running the multi-file create
workload wdir .

3.3.4 File System Summary. We now present a set of observations for the file systems based on
the questions from Section 3.2.5.

File System Behavior to fsync Failures. On all the three file systems, only data and journal-
block failures lead to fsync failures (Q1). Metadata-block failures do not result in fsync failures
as metadata blocks are written to the journal during an fsync. However, during a checkpoint,
any metadata failure on XFS and Btrfs lead to unavailability (Q8) while ext4 logs the error and
continues.7

7Ext4’s error handling behavior for metadata has unintended side-effects, but we omit the results, as the rest of the article

focuses on data-block failures.

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

Handling fsync Failures 12:17

On both modes of ext4 and XFS, metadata is persisted even after the file system encounters
a data-block failure (Q2); timestamps are always updated in both file systems. Additionally, ext4
appends a new block to the file and updates the file size, while XFS does so only when followed by
a future successful fsync. As a result, we find non-overwritten blocks in both the middle and end
of files for ext4, but in only the middle for XFS (Q10). Btrfs does not persist metadata after a data-
block failure. However, because the process file-descriptor offset is incremented, future writes
and fsyncs cause a hole in the middle of the file (Q10).

Among the three, XFS is the only file system that retries metadata-block writes. However, none
of them retry data or journal-block writes (Q3).

All the file systems mark the page clean even after fsync fails (Q4). In both modes of ext4 and
XFS, the page contains the latest write, while Btrfs reverts the in-memory state to be consistent
with what is on disk (Q5).

We note that even though all the file systems mark the page clean, this is not due to any behav-
ior inherited from the VFS layer. Each file system registers its own handlers to write pages to disk
(ext4_writepages, xfs_vm_writepages, and btrfs_writepages). However, each of these han-
dlers call clear_page_dirty_for_io before submitting the bio request and do not set the dirty
bit in case of failure to avoid memory leaks,8 replicating the problem independently.

Failure Reporting. While all file systems report data-block failures by failing fsync, ext4 or-
dered mode, XFS, and Btrfs fail the immediate fsync. As ext4 data mode puts data in the journal,
the first fsync succeeds and the next fsync fails. (Q6). All block write failures, irrespective of
block type, are logged in the syslog (Q7).

After Effects. Journal block failures always lead to file-system unavailability. On XFS and Btrfs,
metadata-block failures do so as well (Q8). While ext4 and Btrfs remount in read-only mode, XFS
shuts down the file system (Q9). Holes and non-overwritten blocks (Q10) have been covered pre-
viously as part of Q2.

Recovery. None of the file systems alert the user to run a file-system checker. However, as Btrfs
records intentionally created holes as zero-byte extents, holes created through fsync failures (as
seen in wma) can be detected by btrfsck due to missing zero-byte extent information (Q11).

4 APPLICATION STUDY

We now focus on how applications are affected by fsync failures. In this section, we first describe
our fault model with CuttleFS, followed by a description of the workloads, execution environment,
and the errors we look for. Then, we present our findings for five widely used applications: Redis
(v5.0.7), LMDB (v0.9.24), LevelDB (v1.22), SQLite (v3.30.1), and PostgreSQL (v12.0).

4.1 CuttleFS

We limit our study to how applications are affected by data-block failures, as journal-block failures
lead to unavailability and metadata-block failures do not result in fsync failures (Section 3.3). Our
fault model is simple: When an application writes data, we inject a single fault to a data block or
a sector within it.

We build CuttleFS9 [10]—a FUSE [42] file system to emulate the different file-system reactions to
failures defined by our fault model. Instead of using the kernel’s page cache, CuttleFS maintains its
own page cache in user-space memory. Write operations modify user-space pages and mark them

8Ext4 focuses on the common case of users removing USB sticks while still in use. Dirty pages that can never be written

to the removed USB stick have to be marked clean to unmount the file system and reclaim memory [26].
9Cuttlefish are sometimes referred to as the “chameleons of the sea” because of their ability to rapidly alter their skin color

within a second. CuttleFS can change characteristics much faster.

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

12:18 A. Rebello et al.

dirty while read operations serve data from these pages. When an application issues an fsync
system call, CuttleFS synchronizes data with the underlying file system.

CuttleFS has two modes of operation: trace mode and fault mode. In trace mode, CuttleFS tracks
writes and identifies which blocks are eventually written to disk. This is different from just tracing
a write system call, as an application may write to a specific portion of a file multiple times before
it is actually flushed to disk.

In fail mode, CuttleFS can be configured to fail the ith write to a sector or block associated
with a particular file. On fsync failure, as CuttleFS uses in-memory buffers, it can be directed to
mark a page clean or dirty, keep the latest content, or revert the file to the previous state. Error
reporting behavior can be configured to report failures immediately or on the next fsync call.
In short, CuttleFS can react to fsync failures in any of the ways mentioned in Table 1 (Q4,5,6).
Additionally, CuttleFS accepts commands to evict all or specific clean pages.

We configure CuttleFS to emulate the failure reactions of the file systems studied in Section 3.3.
For example, to emulate ext4 ordered mode and XFS (as they both have similar failure reactions),
we configure CuttleFS to mark the page clean, keep the latest content, and report the error im-
mediately. Henceforth, when presenting our findings and referring to characteristics emulated by
CuttleFS, we use CuttleFSext4o,xfs for the above configuration. When the page is marked clean, has
the latest content, but the error is reported on the next fsync, we use CuttleFSext4d. When the page
is marked clean, the content matches what is on disk, and the error is reported immediately, we
refer to it as CuttleFSbtrfs.

4.2 Workloads and Execution Environment

We run CuttleFS in trace mode and identify which blocks are written to by an application. For
each application, we choose a simple workload that inserts a single key-value pair, a commonly
used operation in many applications. We perform experiments both with an existing key (update)
as well as a new key (insert). The keys can be of size 2 B or 1 KB.10 The values can be of size 2 B
or 12 KB. We run experiments for all four combinations. The large keys allow for the possibility
of failing a single sector within the key and large values for pages within a value. Since SQLite
and PostgreSQL are relational database management systems, we create a single table with two
columns: keys and values.

Using the trace, we generate multiple failure sequences for each of the identified blocks and
sectors within them. We then repeat the experiment multiple times with CuttleFS in fault mode,
each time with a different failure sequence and file-system reaction. To observe the effects after a
fault, we dump all key-value pairs before and after the workload.

We look for the following types of errors when performing the experiments:

• OldValue (OV): The system returns the new value for a while but then reverts to an old
value, or the system conveys a successful response but returns the old value later on.

• FalseFailure (FF): The system informs the user that the operation failed but returns the
new value in the future.

• KeyCorruptions (KC) and ValueCorruptions (VC): Corrupted keys or values are obliv-
iously returned.

• KeyNotFound (KNF): The system informs the user that it has successfully inserted a key
but it cannot be found later on, or the system fails to update a key to a new value but the
old key-value pair disappears as well.

10As LMDB limits key sizes to 511 B, we use key sizes of 2 B and 511 B for LMDB experiments.

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

Handling fsync Failures 12:19

Table 2. Findings for Applications on fsync Failure

The table lists the different types of errors that manifest for applications when fsync fails due to a data-block write fault.

The errors (OV, FF, KC, VC, KNF) are described in Section 4.2. We group columns depending on how a file system reacts

to an fsync failure according to our findings in Section 3.3 for Q4, Q5, and Q6. For example, both ext4 ordered and XFS

(ext4o,xfs) mark a page clean, the page differs in in-memory and on-disk content, and the fsyncfailure is reported im-

mediately. For each application, we describe when the error manifests, in terms of combinations of the four different

execution environment factors (Section 4.2) whose symbols are provided at the top left corner. For example, OldValue

manifests in Redis in the first group (ext4-ordered, XFS) only on (A)App=Restart,(BC)BufferCache=Evict. However, in the

last group (Btrfs), the error manifests both on App=Restart,BufferCache=Evict as well as App=Restart,BufferCache=Keep,

depicted as a combination of the two symbols.

We also identify the factors within the execution environment that cause all these errors to be
manifested. If an application maintains its own in-memory data structures, then some errors may
occur only when an application restarts and rebuilds in-memory state from the file system. Alter-
natively, the manifestation of these errors may depend on state changes external to the application,
such as a single page eviction or a full page cache flush. We encode these different scenarios as:

• App=KeepGoing: The application continues without restarting.
• App=Restart: The application restarts either after a crash or a graceful shutdown. This

forces the application to rebuild in-memory state from disk.
• BufferCache=Keep: No evictions take place.
• BufferCache=Evict: One or more clean pages are evicted.

Note that BufferCache=Evict can manifest by clearing the entire page cache, restarting the file
system, or just evicting clean pages due to memory pressure. A full system restart would be the
combination of App=Restart and BufferCache=Evict, which causes a loss of both clean and dirty
pages in memory while also forcing the application to restart and rebuild state from disk.

Configuring CuttleFS to fail a certain block and react according to one of the file-system
reactions while the application runs only addresses App=KeepGoing and BufferCache=Keep.
The remaining three scenarios are addressed as follows: To simulate App=Restart and
BufferCache=Keep, we restart the application and dump all key-value pairs, ensuring that no page
in CuttleFS is evicted. To address the remaining two scenarios, we instruct CuttleFS to evict clean
pages for both App=KeepGoing and App=Restart.

4.3 Findings

We configured all five applications to run in the form that offers most durability and discuss what
they are in their respective sections. Table 2 summarizes the per-application results across different
failure characteristics.

Note that these results are only for the simple workload that inserts a single key-value pair. A
complex workload may exhibit more errors or mask the ones we observe.

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

12:20 A. Rebello et al.

Redis: Redis is an in-memory data-structure store, used as a database, cache, and message bro-
ker. By default, it periodically snapshots in-memory state to disk. However, for better durability
guarantees, it provides options for writing every operation that modifies the store to an append-
only file (aof) [22] and how often to fsync the aof. In the event of a crash or restart, Redis rebuilds
in-memory state by reading the contents of the aof.

We configure Redis to fsync the file for every operation, providing strong durability. Thus,
whenever Redis receives a request like an insert operation that modifies state, it writes the request
to the aof and calls fsync. However, Redis trusts the file system to successfully persist the data
and does not check the fsync return code. Regardless of whether fsync fails or not, Redis returns
a successful response to the client.

As Redis returns a successful response to the client irrespective of fsync failure, FalseFailures
do not occur. Since Redis reads from disk only when rebuilding in-memory state, errors may occur
only during App=Restart.

On CuttleFSext4o,xfs and CuttleFSext4d, Redis exhibits OldValue, KeyCorruption, ValueCor-
ruption, and KeyNotFound errors. However, as seen in Table 2, these errors occur only on
BufferCache=Evict and App=Restart. On BufferCache=Keep, the page contains the latest write,
which allows Redis to rebuild the latest state. However, when the page is evicted, future reads will
force a read from disk, causing Redis to read whatever is on that block. OldValue and KeyNotFound
errors manifest when a fault corrupts the aof format. When Redis restarts, it either ignores these
entries when scanning the aof, or recommends running the aof checker, which truncates the file
to the last non-corrupted entry. A KeyCorruption and ValueCorruption manifest when the fault is
within the key or value portion of the entry.

On CuttleFSbtrfs, Redis exhibits OldValue and KeyNotFound errors. These errors occur on
App=Restart, regardless of buffer-cache state. When Redis restarts, the entries are missing from
the aof as the file was reverted, and thus, the insert or update operation is not applied.

LMDB: Lightning Memory-Mapped Database (LMDB) is an embedded key-value store that
uses B+Tree data structures whose nodes reside in a single file. The first two pages of the file are
metadata pages, each of which contain a transaction ID and the location of the root node. Readers
always use the metadata page with the latest transaction ID, while writers make changes and
update the older metadata page.

LMDB uses a copy-on-write bottom-up strategy [14] for committing write transactions. All
new nodes from leaf to root are written to unused or new pages in the file, followed by an fsync.
An fsync failure terminates the operation without updating the metadata page and notifies the
user. If fsync succeeds, then LMDB proceeds to update the old metadata page with the new root
location and transaction ID, followed by another fsync.11 If fsync fails, then LMDB writes an old
transaction ID to the metadata page in memory, preventing future readers from reading it.

On CuttleFSext4o,xfs, LMDB exhibits FalseFailures. When LMDB writes the metadata page, it only
cares about the transaction ID and new root location, both of which are contained in a single sec-
tor. Thus, even though the sector is persisted to disk, failures in the seven other sectors of the
metadata page can cause an fsync failure.12 As mentioned earlier, LMDB writes an old transac-
tion ID (say, ID1) to the metadata page in memory and reports a failure to the user. However, on
BufferCache=Evict and App=Restart (such as a machine crash and restart), ID1 is lost, as it was

11To be precise, LMDB does not do a write followed by an fsync for metadata page updates. Instead, it uses a file descriptor

that is opened in O_SYNC mode. On a write, only the metadata page is flushed to disk. On failure, it uses a normal file

descriptor.
12CuttleFS can fail the ith write to a sector or block(Section 4.1). We observed FalseFailures in LMDB when CuttleFS was

configured to fail writes to sectors in the metadata pages.

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

Handling fsync Failures 12:21

only written to memory and not persisted. Thus, readers read from the latest transaction ID, which
is the previously failed transaction.

LMDB does not exhibit FalseFailures in CuttleFSext4d, as the immediate successful fsync
results in a success to the client. Instead, ValueCorruptions and OldValue errors occur on
BufferCache=Evict, regardless of whether the application restarts or not. ValueCorruptions oc-
cur when a block containing a part of the value experiences a fault. As LMDBmmaps () the file and
reads directly from the page cache, BufferCache=Evict such as a page eviction leads to reading the
value of the faulted block from disk. OldVersion errors occur when the metadata page experiences
a fault. The file system responds with a successful fsync initially (as data is successfully stored
in the ext4 journal). For a short time, the metadata page has the latest transaction ID. However,
when the page is evicted, the metadata page reverts to the old transaction ID on disk, resulting in
readers reading the old value. KeyCorruptions do not occur, as the maximum allowed key size is
511 B.

As CuttleFSbtrfs reports errors immediately, it does not face the problems seen in CuttleFSext4d.
FalseFailures do not occur, as the file is reverted to its previous consistent state. We observe this
same pattern in many of the applications and omit them from the rest of the discussion unless
relevant.

LevelDB: LevelDB is a widely used key-value store based on LSM trees. It stores data internally
using MemTables and SSTables [36]. Additionally, LevelDB writes operations to a log file before
updating the MemTable. When a MemTable reaches a certain size, it becomes immutable and is
written to a new file as an SSTable. SSTables are always created and never modified in place. On a
restart, if a log file exists, then LevelDB creates an SSTable from its contents.

We configure LevelDB to fsync the log after every write, for stronger durability guarantees. If
fsync fails, then the MemTable is not updated and the user is notified about the failure. If fsync
fails during SSTable creation, then the operation is cancelled and the SSTable is left unused.

On CuttleFSext4o,xfs, as seen in Table 2, LevelDB exhibits FalseFailures only on App=Restart with
BufferCache=Keep. When LevelDB is notified of fsync failure to the log file, the user is notified
of the failure. However, on restart, since the log entry is in the page cache, LevelDB includes it
while creating an SSTable from the log file. Read operations from this point forward return the
new value, reflecting FalseFailures. FalseFailures do not occur on BufferCache=Evict as LevelDB
is able to detect invalid entries through CRC checksums [36]. Faults in the SSTable are detected
immediately and do not cause any errors, as the newly generated SSTable is not used by LevelDB
in case of a failure.

On CuttleFSext4d, LevelDB exhibits KeyNotFound and OldVersion errors when faults occur in the
log file. When inserting a key-value pair, fsync returns successfully, allowing future read opera-
tions to return the new value. However, on BufferCache=Evict and App=Restart, LevelDB rejects
the corrupted log entry and returns the old value for future read operations. Depending on whether
we insert a new or existing key, we observe KeyNotFound or OldVersion errors when the log entry
is rejected. Additionally, LevelDB exhibits KeyCorruption, ValueCorruption, and KeyNotFound er-
rors for faults that occur in the SSTables. Ext4 data mode may only place the data in the journal
and return a successful fsync. Later, during checkpointing, the SSTable is corrupted due to the
fault. These errors manifest only on BufferCache=Evict, either while the application is running or
on restart, depending on when the SSTable is read from disk.

SQLite: SQLite is an embedded RDBMS that uses BTree data structures. A separate BTree is used
for each table and index but all BTrees are stored in a single file on disk, called the “main database
file” (maindb). During a transaction, SQLite stores additional information in a second file called
the “rollback journal” (rj) or the “write-ahead log” (wal) depending on which mode it is operating

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

12:22 A. Rebello et al.

in. In the event of a crash or restart, SQLite uses these files to ensure that committed or rolled-back
transactions are reflected in the maindb. Once a transaction completes, these files are deleted. We
perform experiments for both modes.

SQLite RollBack: In rollback journal mode, before SQLite modifies its user-space buffers, it
writes the original contents to the rj. On commit, the rj is fsyncd. If it succeeds, then SQLite
writes a header to the rj and fsyncs again (2 fsyncs on the rj). If a fault occurs at this point, then
only the state in the user-space buffers need to be reverted. If not, then SQLite proceeds to write
to the maindb so it reflects the state of the user-space buffers. maindb is then fsyncd. If the fsync
fails, then SQLite needs to rewrite the old contents to the maindb from the rj and revert the state
in its user-space buffers. After reverting the contents, the rj is deleted.

On CuttleFSext4o,xfs, SQLite Rollback exhibits FalseFailures and ValueCorruptions on
BufferCache=Evict, regardless of whether the application restarts or not. When faults occur in the
rj, SQLite chooses to revert in-memory state using the rj itself, as it contains just enough informa-
tion for a rollback of the user-space buffers. This approach works well as long as the latest contents
are in the page cache. However, on BufferCache=Evict, when SQLite reads the rj to rollback
in-memory state, the rj does not contain the latest write. As a result, SQLite’s user-space buffers can
still have the new contents (FalseFailure) or a corrupted value, depending on where the fault occurs.

SQLite Rollback exhibits FalseFailures in CuttleFSext4d for the same reasons mentioned above as
the fsync failure is caught on the second fsync to the rj. Additionally, due to the late error re-
porting in CuttleFSext4d, SQLite Rollback exhibits ValueCorruption and KeyNotFound errors when
faults occur in the maindb. SQLite sees a successful fsync after writing data to the maindb and
proceeds to delete the rj. However, on App=Restart and BufferCache=Evict, the above-mentioned
errors manifest depending on where the fault occurs.

On CuttleFSbtrfs, SQLite Rollback exhibits FalseFailures for the same reasons mentioned above.
However, they occur irrespective of whether buffer-cache state changes due to the fact that the
contents in the rj are reverted. As there is no data in the rj to recover from, SQLite leaves the user-
space buffers untouched. ValueCorruptions cannot occur, as no attempt is made to revert the in-
memory content.

SQLite WAL: Unlike SQLite Rollback, changes are written to a write-ahead log (wal) on a trans-
action commit. SQLite calls fsync on the wal and proceeds to change in-memory state. If fsync
fails, then SQLite immediately returns a failure to the user. If SQLite has to restart, then it rebuilds
state from the maindb first and then changes state according to the entries in the wal. To ensure
that the wal does not grow too large, SQLite periodically runs a Checkpoint Operation to modify
maindb with the contents from the wal.

On CuttleFSext4o,xfs, as seen in Table 2, SQLite WAL exhibits FalseFailures only on App=Restart
with BufferCache=Keep, for reasons similar to LevelDB. It reads valid log entries from the page
cache even though they might be invalid due to faults on disk.

On CuttleFSext4d, SQLite WAL exhibits ValueCorruption and KeyNotFound Errors when there
are faults in the maindb during a Checkpoint Operation for the same reasons mentioned in SQLite
Rollback.

PostgreSQL: PostgreSQL is an object-relational database system that maintains one file per data-
base table. On startup, it reads the on-disk tables and populates user-space buffers. Similar to
SQLite WAL, PostgreSQL reads entries from the write-ahead log (wal) and modifies user-space
buffers accordingly. Similar to SQLite WAL, PostgreSQL runs a checkpoint operation, ensuring
that the wal does not grow too large. We evaluate two configurations of PostgreSQL: the default
configuration and a DirectIO configuration.

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

Handling fsync Failures 12:23

PostgreSQL Default: In the default mode, PostgreSQL treats the wal like any other file, using
the page cache for reads and writes. PostgreSQL notifies the user of a successful commit operation
only after an fsync on the wal succeeds. During a checkpoint, PostgreSQL writes data from its
user-space buffers into the table and calls fsync. If the fsync fails, then PostgreSQL, aware of the
problems with fsync [8], chooses to crash. Doing so avoids truncating the wal and ensures that
checkpointing can be retried later.

On CuttleFSext4o,xfs, PostgreSQL exhibits FalseFailures for reasons similar to LevelDB. While
App=Restart is necessary to read the entry from the log, BufferCache=Evict is not. Further, the
application restart cannot be avoided, as PostgreSQL intentionally crashes on an fsync failure. On
BufferCache=Keep, PostgreSQL reads a valid log entry in the page cache. On BufferCache=Evict,
depending on which block experiences the fault, PostgreSQL either accepts or rejects the log entry.
FalseFailures manifest when PostgreSQL accepts the log entry. However, if the file system were to
also crash and restart, then the page cache would match the on-disk state, causing PostgreSQL to
reject the log entry. Unfortunately, ext4 currently does not behave as expected with mount options
data_err=abort and errors=remount-ro (Section 3.3.1).

Due to the late error reporting in CuttleFSext4d, as seen in Table 2, PostgreSQL exhibits Old-
Version and KeyNotFound Errors when faults occur in the database table files. As PostgreSQL
maintains user-space buffers, these errors manifest only on BufferCache=Evict with App=Restart.
During a checkpoint operation, PostgreSQL writes the user-space buffers to the table. As the fault
is not yet reported, the operation succeeds and the wal is truncated. If the page corresponding
to the fault is evicted and PostgreSQL restarts, then it will rebuild its user-space buffers using an
incorrect on-disk table file. The errors are exhibited depending on where the fault occurs. While
KeyNotFound errors occur in other applications when a new key is inserted, PostgreSQL loses

existing keys on updates as it modifies the table file in-place.
PostgreSQL DIO: In the DirectIO mode, PostgreSQL bypasses the page cache and writes to the

wal using DirectIO. The sequence of operations during a transaction commit and a checkpoint are
exactly the same as the default mode.

FalseFailures do not occur as the page cache is bypassed. However, OldVersion and KeyNot-
Found errors still occur in CuttleFSext4d for the same reasons mentioned above, as writes to the
database table files do not use DirectIO.

5 DISCUSSION

We now present a set of observations and lessons for handling fsync failures across file systems
and applications.

#1: Existing file systems do not handle fsync failures uniformly. In an effort to hide cross-
platform differences, POSIX is intentionally vague on how failures are handled. Thus, different file
systems behave differently after an fsync failure (as seen in Table 1), leading to non-deterministic
outcomes for applications that treat all file systems equally. We believe that the POSIX specification

for fsyncneeds to be clarified and the expected failure behavior described in more detail.

#2: Copy-on-Write file systems such as Btrfs handle fsync failures better than existing jour-
naling file systems such as ext4 and XFS. Btrfs uses new or unused blocks when writing data
to disk; the entire file system moves from one state to another on success and no in-between states
are permitted. Such a strategy defends against corruptions when only some blocks contain newly
written data. File systems that use copy-on-write may be more generally robust to fsyncfailures than

journaling file systems.

#3: Ext4 data mode provides a false sense of durability. Application developers sometimes
choose to use a data journaling file system despite its lower performance, because they believe
data mode is more durable [12]. Ext4 data mode does ensure data and metadata are in a “consis-

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

12:24 A. Rebello et al.

tent state,” but only from the perspective of the file system. As seen in Table 2, application-level
inconsistencies are still possible. Furthermore, applications cannot determine whether an error
received from fsync pertains to the most recent operation or an operation sometime in the past.
When failed intentions are a possibility, applications need a stronger contract with the file system,

notifying them of relevant context such as data in the journal and which blocks were not successfully

written.

#4: Existing file-system fault-injection tests are devoid of workloads that continue to run
post failure. While all file systems perform fault-injection tests, they are mainly to ensure that
the file system is consistent after encountering a failure. Such tests involve shutting down the file
system soon after a fault and checking if the file system recovers correctly when restarted. We

believe that file-system developers should also test workloads that continue to run post failure, and

see if the effects are as intended. Such effects should then be documented. File-system developers
can also quickly test the effect on certain characteristics by running those workloads on CuttleFS
before changing the actual file system.

#5: Application developers write OS-specific code, but are not aware of all OS-differences.
The FreeBSD VFS layer chooses to re-dirty pages when there is a failure (except when the device
is removed) [6] while Linux hands over the failure handling responsibility to the individual file
systems below the VFS layer (Section 3.3.4). We hope that the Linux file-system maintainers will

adopt a similar approach in an effort to handle fsyncfailures uniformly across file systems. Note
that it is also important to think about when to classify whether a device has been removed. For
example, while storage devices connected over a network are not really as permanent as local
hard disks, they are more permanent than removable USB sticks. Temporary disconnects over a
network need not be perceived as device removal and re-attachment; pages associated with such
a device can be re-dirtied on write failure.

#6: Application developers do not target specific file systems. We observe that data-intensive
applications configure their durability and error-handling strategies according to the OS they are
running on, but treat all file systems on a specific operating system equally. Thus, as seen in Table 2,
a single application can manifest different errors depending on the file system. If the POSIX standard

is not refined, then applications may wish to handle fsyncfailures on different file systems differently.

Alternatively, applications may choose to code against failure handling characteristics as opposed to
specific file systems, but this requires file systems to expose some interface to query characteristics
such as “Post Failure Page State/Content” and “Immediate/Delayed Error Reporting.”

#7: Applications employ a variety of strategies when fsync fails, but none are sufficient. As
seen in Section 4.3, Redis chooses to trust the file system and does not even check fsync return
codes; LMDB, LevelDB, and SQLite revert in-memory state and report the error to the application
while PostgreSQL chooses to crash. We have seen that none of the applications retry fsync on
failure; application developers appear to be aware that pages are marked clean on fsync failure
and another fsync will not flush additional data to disk. Despite the fact that applications take
great care to handle a range of errors from the storage stack (e.g., LevelDB writes CRC Check-
sums to detect invalid log entries and SQLite updates the header of the rollback journal only af-
ter the data is persisted to it), data durability cannot be guaranteed as long as fsync errors are
not handled correctly. While no one strategy is always effective, the approach currently taken by

PostgreSQL to use direct IO may best handle fsyncfailures. If file systems do choose to report fail-
ure handling characteristics in a standard format, then applications may be able to employ better
strategies. For example, applications can choose to keep track of dirtied pages and re-dirty them
by reading and writing back a single byte if they know that the page content is not reverted on
failure (ext4, XFS). On Btrfs, one would have to keep track of the page as well as its content. For

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

Handling fsync Failures 12:25

applications that access multiple files, it is important to note that the files can exist on different file
systems.

#8: Applications run recovery logic that accesses incorrect data in the page cache. Applica-
tions that depend on the page cache for faster recovery are susceptible to FalseFailures. As seen in
LevelDB, SQLite, and PostgreSQL, when the wal incurs an fsync failure, the applications fail the
operation and notify the user; in these cases, while the on-disk state may be corrupt, the entry in
the page cache is valid; thus, an application that recovers state from the wal might read partially
valid entries from the page cache and incorrectly update on-disk state. Applications should read the

on-disk content of files when performing recovery.

#9: Application recovery logic is not tested with low-level block faults. Applications test re-
covery logic and possibilities of data loss by either mocking system call return codes or em-
ulating crash-restart scenarios, limiting interaction with the underlying file system. As a re-
sult, failure handling logic by the file system is not exercised. Applications should test recov-

ery logic using low-level block injectors that force underlying file-system error handling. Alterna-
tively, they could use a fault injector like CuttleFS that mimics different file-system error-handling
characteristics.

6 RELATED WORK

In this section, we discuss how our work builds upon and differs from past studies in key ways.
We include works that study file systems through fault injection, error handling in file systems,
and the impact of file-system faults on applications.

Our study on how file systems react to failures is related to work done by Prabhakaran et al.
with IRON file systems [53] and a more recent study conducted by Jaffer et al. [43]. Other works
study specific file systems such as NTFS [31] and ZFS [62]. All these studies inject failures beneath
the file system and analyze if and how file systems detect and recover from them. These stud-
ies use system-call workloads (e.g., writes and reads) that make the file system interact with the
underlying device.

While prior studies do exercise some portions of the fsync path through single system-call
operations, they do not exercise the checkpoint path. More importantly, in contrast to these past
efforts, our work focuses specifically on the in-memory state of a file system and the effects of future

operations on a file system that has encountered a write fault. Specifically, in our work, we choose
workloads that continue after a fault has been introduced. Such workloads help in understanding
the after-effects of failures during fsync such as masking of errors by future operations, fixing the
fault, or exacerbating it.

Mohan et al. [49] use bounded black-box crash testing to exhaustively generate workloads and
discover many crash-consistency bugs by simulating power failures at different persistence points.
Our work focuses on transient failures that may not necessarily cause a file system to crash and the
effect on applications even though a file system may be consistent. Additionally, we inject faults
in the middle of an fsync as opposed to after a successful fsync (persistence point).

Gunawi et al. describe the problem of failed intentions [39] in journaling file systems and sug-
gest chained transactions to handle such faults during checkpointing. Another work develops a
static-analysis technique named Error Detection and Propagation [40] and conclude that file sys-
tems neglect many write errors. Even though the Linux kernel has improved its block-layer error
handling [11], file systems may still neglect write errors. Our results are purely based on injecting
errors in bio requests that the file system can detect.

Vondra describes how certain assumptions about fsync behavior led to data loss in Post-
greSQL [60]. The data loss behavior was reproduced using a device mapper with the dm-error

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

12:26 A. Rebello et al.

target, which inspired us to build our own fault injector (dm-loki [4]) atop the device mapper, sim-
ilar to dm-inject [43]. Additionally, the FSQA suite (xfstests) [7] emulates write errors using the
dm-flakey target [5]. While dm-flakey is useful for fault-injection testing, faults are injected based
on current time; the device is available for x seconds and then exhibits unreliable behavior for y
seconds (x and y being configurable). Furthermore, any change in configuration requires suspend-
ing the device. To increase determinism and avoid relying on time, dm-loki injects faults based
on access patterns (e.g., fail the second and fourth write to block 20) and is capable of accepting
configuration changes without device suspension.

Recent work has shifted the focus to study the effects of file-system faults in distributed storage
systems [37] and high-performance parallel systems [32]. Similarly, our work focuses on under-
standing how file systems and applications running on top of them behave in the presence of
failures.

7 CONCLUSIONS

Applications that care about data must care about how data is written to stable storage. IO
requests such as read and write system calls do not always translate to device-level requests, as
the page cache buffers contents in volatile memory. Therefore, applications are able to leverage
the performance benefits of the page cache without any modification to their source code.
However, in cases where applications require specific data in the page cache to be written to disk
immediately, fsync must be invoked.

In this article, we described why fsync may fail and how three different file systems (ext4, XFS,
Btrfs) currently handle these failures. We also described how applications use fsync to provide
durability guarantees and the consequences of incorrectly handling fsync failures.

7.1 File Systems

File systems are tasked with a heavy burden. They must be able to support applications that care
about performance as well as those that care about durability. They must make both options effi-
cient while leaving the tradeoff decision to the application developers. File-system developers have
spent considerable time and effort optimizing the common case and ensuring durability, year after
year, as hardware technology advances. However, while most hardware advancements introduce
increased performance and robustness, advancements in availability have changed the way devices
fail. Changes from the fail-stop model to the fail-partial model [52, 53] required changes in how
failures were handled. With incomplete specifications for failure handling, file-system developers
chose to interpret the standard differently, causing non-uniform behavior across file systems, as
seen in Section 3.3.

We hope that file-system developers will eventually agree on a standard way to handle fsync
failures. However, the current situation requires application developers to be aware of differences
between file systems. Unfortunately, the post-failure characteristics described in this article were
either not documented or not easily accessible; most of the error-handling knowledge lies with
file-system maintainers. Tracing and visualization tools like blockviz (Section 3.2.3) can provide
useful insights into file-system behavior. While application developers are free to download and
use these tools, we hope that file-system maintainers can use them to aid in better documentation;
short traces can clearly explain file-system behavior for common workloads.

A good fault-injection toolchain facilitates easier failure-handling studies and testing. While
the device-mapper framework has a few modules to inject errors, it is far from complete. The
dm-loki kernel module (Section 3.2.2) and an error emulation tool in prior work by Jaffer et al. [43]
are useful contributions that can aid future fault-injection studies. However, such tools currently

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

Handling fsync Failures 12:27

work under the neatly abstracted block layer in the kernel. With the advent of low-latency storage
devices and kernel-bypass techniques, fault-injection toolchains must change accordingly.

7.2 Applications

Most applications that provide durability guarantees are aware that fsync can fail. Of the five
applications we studied, Redis was the only one that did not have any fsync error-handling code.
However, due to the differences in file-system fsync failure handling, no single application-level
error-handling strategy works well for all file systems.

One way that applications expand their user base is by supporting multiple operating systems.
Making an application portable can take significant effort just for the commonly used features.
Given the current state of non-uniform post-failure characteristics, achieving correct failure han-
dling on every file system and operating system is a herculean task. However, informing users
of durability guarantees and potential data-loss concerns on different file systems they support
would be an excellent addition to the already well maintained online documentation that current
applications provide.

While many of our application findings are tied to the fact that file systems mark dirty pages
clean even on a failed write, they may remain relevant even after the issue is fixed. If a file sys-
tem were to re-dirty the previously marked clean pages belonging to the failed write, then an
application may still recover state from the dirty pages rather than from disk. Such an application
may then proceed to serve results that could potentially be lost if the machine crashes before the
dirty pages are written to disk successfully. However, if file systems choose to revert the content
of all dirty pages involved in a failed fsync (as seen in Btrfs), then our findings will no longer be
applicable to applications using write-ahead log strategies with fsync error-handling code.

Applications that choose to test their error-handling strategies and provide durability guaran-
tees must not rely entirely on mocking system call return values. Since error-handling code may
involve accessing state on the erroneous system, mocks must also replicate state of said system
after the error. While injecting faults at the device level is a more reliable method, it is challeng-
ing to express fault-injection intents at the block level without access to file-level abstractions.
We believe that tools like CuttleFS (Section 4.1) that offer the ability to inject faults for certain
file offsets and evict cached pages on demand will be useful for applications that wish to test the
effectiveness of their error-handling strategies.

ACKNOWLEDGMENTS

We thank the ACM TOS reviewers for their detailed reviews on this extended version. We thank Pe-
ter Macko (our shepherd), the anonymous reviewers, and the members of ADSL for their insightful
comments and suggestions for our prior submission to ATC’20 [54]. We thank CloudLab [35] for
providing a great environment to run our experiments.

REFERENCES

[1] SQLite. 2020. Atomic Commit in SQLite. Retrieved from https://www.sqlite.org/atomiccommit.html.

[2] Anthony Rebello. 2020. Bug-207729 Mounting EXT4 with data_err=abort does not abort journal on data block write

failure. Retrieved from https://bugzilla.kernel.org/show_bug.cgi?id=207729.

[3] Allen Lai. 2020. Bug-27805553 HARD ERROR SHOULD BE REPORTED WHEN FSYNC() RETURN EIO. Retrieved

from https://github.com/mysql/mysql-server/commit/8590c8e12a3374eeccb547359750a9d2a128fa6a.

[4] Anthony Rebello. 2020. Custom Fault Injection Device Mapper Target: dm-loki. Retrieved from https://github.com/

WiscADSL/dm-loki.

[5] The Linux Kernel Organization. 2020. Device Mapper: dm-flakey. Retrieved from https://www.kernel.org/doc/html/

latest/admin-guide/device-mapper/dm-flakey.html.

[6] The FreeBSD Project. 2020. FreeBSD VFS Layer re-dirties pages after failed block write. Retrieved from https://github.

com/freebsd/freebsd/blob/0209fe3398be56e5e042c422a96a4fbc654247f4/sys/kern/vfs_bio.c#L2646.

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

https://www.sqlite.org/atomiccommit.html
https://bugzilla.kernel.org/show_bug.cgi?id$=$207729
https://github.com/mysql/mysql-server/commit/8590c8e12a3374eeccb547359750a9d2a128fa6a
https://github.com/WiscADSL/dm-loki
https://github.com/WiscADSL/dm-loki
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/dm-flakey.html
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/dm-flakey.html
https://github.com/freebsd/freebsd/blob/0209fe3398be56e5e042c422a96a4fbc654247f4/sys/kern/vfs_bio.c#L2646
https://github.com/freebsd/freebsd/blob/0209fe3398be56e5e042c422a96a4fbc654247f4/sys/kern/vfs_bio.c#L2646

12:28 A. Rebello et al.

[7] The Linux Kernel Organization. 2020. FSQA (xfstests). Retrieved from https://git.kernel.org/pub/scm/fs/xfs/xfstests-

dev.git/about/.

[8] Thomas Munro and Craig Ringer. 2020. Fsync Errors—PostgreSQL wiki. Retrieved from https://wiki.postgresql.org/

wiki/Fsync_Errors.

[9] The Linux Kernel Organization. 2020. fsync(2)—Linux Programmer’s Manual. Retrieved from http://man7.org/linux/

man-pages/man2/fdatasync.2.html.

[10] Anthony Rebello. 2020. FUSE file system to emulate different file-system failure reactions: CuttleFS. Retrieved from

https://github.com/WiscADSL/cuttlefs.

[11] Jonathan Corbet. 2020. Improved block-layer error handling. Retrieved from https://lwn.net/Articles/724307/.

[12] The Stack Exchange network. 2020. Is data=journal safer for Ext4 as opposed to data=ordered? Retrieved from https:

//unix.stackexchange.com/q/127235.

[13] Google. 2020. LevelDB. Retrieved from https://github.com/google/leveldb.

[14] Howard Chu. 2020. Lightning Memory-Mapped Database Manager (LMDB). Retrieved from http://www.lmdb.tech/

doc/.

[15] The Linux Kernel Organization. 2020. Man Pages: dmsetup. Retrieved from https://man7.org/linux/man-pages/man8/

dmsetup.8.html.

[16] The Linux Kernel Organization. 2020. Man Pages: losetup. Retrieved from https://man7.org/linux/man-pages/man8/

losetup.8.html.

[17] IEEE and The Open Group. 2020. POSIX Specification for fsync. Retrieved from https://pubs.opengroup.org/

onlinepubs/9699919799/functions/fsync.html.

[18] The PostgreSQL Global Development Group. 2020. PostgreSQL. Retrieved from https://www.postgresql.org/.

[19] The PostgreSQL Global Development Group. 2020. PostgreSQL: Write-Ahead Logging (WAL). Retrieved from https:

//www.postgresql.org/docs/current/wal-intro.html.

[20] Craig Ringer. 2020. PostgreSQL’s handling of fsync() errors is unsafe and risks data loss at least on

XFS. Retrieved from https://www.postgresql.org/message-id/flat/CAMsr+YHh+5Oq4xziwwoEfhoTZgr07vdGG+hu=

1adXx59aTeaoQ@mail.gmail.com

[21] Redis Labs. 2020. Redis. Retrieved from https://redis.io/.

[22] Redis Labs. 2020. Redis Persistence. Retrieved from https://redis.io/topics/persistence.

[23] SQLite. 2020. SQLite. Retrieved from https://www.sqlite.org/index.html.

[24] SQLite. 2020. SQLite Write-Ahead Logging. Retrieved from https://www.sqlite.org/wal.html.

[25] SystemTap. 2020. SystemTap. Retrieved from https://sourceware.org/systemtap/.

[26] Theodore Ts’o. 2020. Why does ext4 clear the dirty bit on I/O error? Retrieved from https://www.postgresql.org/

message-id/edc2e4d5-5446-e0db-25da-66db6c020cc3%40commandprompt.com

[27] WiredTiger. 2020. WT-4045 Don’t retry fsync calls after EIO failure. Retrieved from https://github.com/wiredtiger/

wiredtiger/commit/ae8bccce3d8a8248afa0e4e0cf67674a43dede96.

[28] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. 2018. Operating Systems: Three Easy Pieces (1st ed.). Arpaci-

Dusseau Books.

[29] Lakshmi N. Bairavasundaram, Garth Goodson, Bianca Schroeder, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. 2008. An analysis of data corruption in the storage stack. In Proceedings of the 6th USENIX Symposium on

File and Storage Technologies (FAST’08). 223–238.

[30] Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar Pasupathy, and Jiri Schindler. 2007. An analysis of latent

sector errors in disk drives. In Proceedings of the ACM SIGMETRICS Conference on Measurement and Modeling of

Computer Systems (SIGMETRICS’07). 289–300.

[31] Lakshmi N. Bairavasundaram, Meenali Rungta, Nitin Agrawal, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,

and Michael M. Swift. 2008. Analyzing the effects of disk-pointer corruption. In Proceedings of the International Con-

ference on Dependable Systems and Networks (DSN’08). 502–511.

[32] Jinrui Cao, Om Rameshwar Gatla, Mai Zheng, Dong Dai, Vidya Eswarappa, Yan Mu, and Yong Chen. 2018. PFault:

A general framework for analyzing the reliability of high-performance parallel file systems. In Proceedings of the

International Conference on Supercomputing. 1–11.

[33] Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. 2013. Optimistic crash consistency. In Proceedings of the 24th ACM Symposium on Operating Systems Prin-

ciples (SOSP’13). 228–243.

[34] Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2012. Consistency

without ordering. In Proceedings of the 10th USENIX Symposium on File and Storage Technologies (FAST’12). 101–116.

[35] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller, Mike

Hibler, David Johnson, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott,

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

https://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git/about/
https://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git/about/
https://wiki.postgresql.org/wiki/Fsync_Errors
https://wiki.postgresql.org/wiki/Fsync_Errors
http://man7.org/linux/man-pages/man2/fdatasync.2.html
http://man7.org/linux/man-pages/man2/fdatasync.2.html
https://github.com/WiscADSL/cuttlefs
https://lwn.net/Articles/724307/
https://unix.stackexchange.com/q/127235
https://unix.stackexchange.com/q/127235
https://github.com/google/leveldb
http://www.lmdb.tech/doc/
http://www.lmdb.tech/doc/
https://man7.org/linux/man-pages/man8/dmsetup.8.html
https://man7.org/linux/man-pages/man8/dmsetup.8.html
https://man7.org/linux/man-pages/man8/losetup.8.html
https://man7.org/linux/man-pages/man8/losetup.8.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/fsync.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/fsync.html
https://www.postgresql.org/
https://www.postgresql.org/docs/current/wal-intro.html
https://www.postgresql.org/docs/current/wal-intro.html
https://www.postgresql.org/message-id/flat/CAMsr+YHh+5Oq4xziwwoEfhoTZgr07vdGG+hu$=$1adXx59aTeaoQ�egingroup count@ "0040elax elax uccode `unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {count@ global mathchardef accent@spacefactor spacefactor }accent 3 count@ egroup spacefactor accent@spacefactor uppercase {gdef @{{char '176}}}endgroup setbox 	hr@@ hbox {@}@tempdima wd 	hr@@ advance @tempdima ht 	hr@@ advance @tempdima dp 	hr@@ @mail.gmail.com
https://www.postgresql.org/message-id/flat/CAMsr+YHh+5Oq4xziwwoEfhoTZgr07vdGG+hu$=$1adXx59aTeaoQ�egingroup count@ "0040elax elax uccode `unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {count@ global mathchardef accent@spacefactor spacefactor }accent 3 count@ egroup spacefactor accent@spacefactor uppercase {gdef @{{char '176}}}endgroup setbox 	hr@@ hbox {@}@tempdima wd 	hr@@ advance @tempdima ht 	hr@@ advance @tempdima dp 	hr@@ @mail.gmail.com
https://redis.io/
https://redis.io/topics/persistence
https://www.sqlite.org/index.html
https://www.sqlite.org/wal.html
https://sourceware.org/systemtap/
https://www.postgresql.org/message-id/edc2e4d5-5446-e0db-25da-66db6c020cc3%40commandprompt.com
https://www.postgresql.org/message-id/edc2e4d5-5446-e0db-25da-66db6c020cc3%40commandprompt.com
https://github.com/wiredtiger/wiredtiger/commit/ae8bccce3d8a8248afa0e4e0cf67674a43dede96
https://github.com/wiredtiger/wiredtiger/commit/ae8bccce3d8a8248afa0e4e0cf67674a43dede96

Handling fsync Failures 12:29

Michael Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The design and operation of Cloud-

Lab. In Proceedings of the USENIX Annual Technical Conference (USENIX ATC’19). 1–14.

[36] Christian Forfang. 2014. Evaluation of High Performance Key-value Stores. Master’s thesis. Norwegian University of

Science and Technology.

[37] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2017. Re-

dundancy does not imply fault tolerance: Analysis of distributed storage reactions to single errors and corruptions.

In Proceedings of the 15th USENIX Conference on File and Storage Technologies (FAST’17). 149–165.

[38] Gregory R. Ganger and Yale N. Patt. 1994. Metadata update performance in file systems. In Proceedings of the 1st

Symposium on Operating Systems Design and Implementation (OSDI’94). 49–60.

[39] Haryadi S. Gunawi, Vijayan Prabhakaran, Swetha Krishnan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. 2007. Improving file system reliability with I/O shepherding. In Proceedings of the 21st ACM Symposium

on Operating Systems Principles (SOSP’07). 293–306.

[40] Haryadi S. Gunawi, Cindy Rubio-González, Remzi H. Arpaci-Dusseau Andrea C. Arpaci-Dusseau, and Ben Liblit.

2008. EIO: Error handling is occasionally correct. In Proceedings of the 6th USENIX Symposium on File and Storage

Technologies (FAST’08). 207–222.

[41] Robert Hagmann. 1987. Reimplementing the Cedar file system using logging and group commit. In Proceedings of the

11th ACM Symposium on Operating Systems Principles (SOSP’87). 155–162.

[42] FUSE (Filesystem in Userspace). 2020. The reference implementation of the Linux FUSE (Filesystem in Userspace)

interface. Retrieved from https://github.com/libfuse/libfuse.

[43] Shehbaz Jaffer, Stathis Maneas, Andy Hwang, and Bianca Schroeder. 2019. Evaluating file system reliability on solid

state drives. In Proceedings of the USENIX Annual Technical Conference (USENIX ATC’19). 783–797.

[44] Hannu H. Kari. 1997. Latent Sector Faults and Reliability of Disk Arrays. Ph.D. Dissertation. Helsinki University of

Technology.

[45] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Bussonnier, Jonathan Frederic,

Kyle Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, Carol Willing,

and Jupyter development team. 2016. Jupyter notebooks—A publishing format for reproducible computational work-

flows. In Positioning and Power in Academic Publishing: Players, Agents and Agendas, Fernando Loizides and Birgit

Scmidt (Eds.). IOS Press, Netherlands, 87–90. Retrieved from https://eprints.soton.ac.uk/403913/.

[46] Andrew Krioukov, Lakshmi N. Bairavasundaram, Garth R. Goodson, Kiran Srinivasan, Randy Thelen, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2008. Parity lost and parity regained. In Proceedings of the 6th USENIX

Symposium on File and Storage Technologies (FAST’08). 127–141.

[47] Avantika Mathur, Mingming Cao, and Andreas Dilger. 2007. Ext4: The next generation of the Ext3 file system. Usenix

Assoc. 32, 3 (June 2007), 25–30.

[48] Jeffrey C. Mogul. 1994. A better update policy. In Proceedings of the USENIX Summer Technical Conference (USENIX

Summer’94). 99–111.

[49] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju, and Vijay Chidambaram. 2018. Finding crash-

consistency bugs with bounded black-box crash testing. In Proceedings of the 13th USENIX Symposium on Operating

Systems Design and Implementation (OSDI’18). 33–50.

[50] Thanumalayan Sankaranarayana Pillai, Ramnatthan Alagappan, Lanyue Lu, Vijay Chidambaram, Andrea C. Arpaci-

Dusseau, and Remzi H. Arpaci-Dusseau. 2017. Application crash consistency and performance with CCFS. In Pro-

ceedings of the 15th USENIX Conference on File and Storage Technologies (FAST’17). 181–196.

[51] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ramnatthan Alagappan, Samer Al-Kiswany, Andrea

C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2014. All file systems are not created equal: On the complexity

of crafting crash-consistent applications. In Proceedings of the 11th Symposium on Operating Systems Design and

Implementation (OSDI’14). 433–448.

[52] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2005. Model-based failure analysis

of journaling file systems. In Proceedings of the International Conference on Dependable Systems and Networks (DSN’05).

802–811.

[53] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. 2005. IRON file systems. In Proceedings of the 20th ACM Symposium on Operating

Systems Principles (SOSP’05). 206–220.

[54] Anthony Rebello, Yuvraj Patel, Ramnatthan Alagappan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

2020. Can applications recover from fsync failures? In Proceedings of the USENIX Annual Technical Conference (USENIX

ATC’20). 753–767.

[55] Ohad Rodeh, Josef Bacik, and Chris Mason. 2013. BTRFS: The Linux B-tree filesystem. ACM Trans. 9, 3 (Aug. 2013),

1–32.

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

https://github.com/libfuse/libfuse
https://eprints.soton.ac.uk/403913/

12:30 A. Rebello et al.

[56] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill. 2010. Understanding latent sector errors and how to protect

against them. In Proceedings of the 8th USENIX Symposium on File and Storage Technologies (FAST’10). 71–84.

[57] Margo Seltzer, Peter Chen, and John Ousterhout. 1990. Disk scheduling revisited. In Proceedings of the Winter 1990

USENIX Conference. 313–323.

[58] Chuck Silvers. 2000. UBC: An efficient unified I/O and memory caching subsystem for NetBSD. In Proceedings of the

USENIX Annual Technical Conference: FREENIX Track. 285–290.

[59] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishimoto, and Geoff Peck. 1996. Scalability in the

XFS file system. In Proceedings of the USENIX Annual Technical Conference.

[60] Tomas Vondra. 2019. PostgreSQL vs. fsync. How is it possible that PostgreSQL used fsync incorrectly for 20 years, and

what we’ll do about it.Brussels, Belgium. Retrieved from https://archive.fosdem.org/2019/schedule/event/postgresql_

fsync/.

[61] Youjip Won, Jaemin Jung, Gyeongyeol Choi, Joontaek Oh, Seongbae Son, Jooyoung Hwang, and Sangyeun Cho.

2018. Barrier-enabled IO stack for flash storage. In Proceedings of the 16th USENIX Conference on File and Storage

Technologies (FAST’18). 211–226.

[62] Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2010. End-to-end data

integrity for file systems: A ZFS case study. In Proceedings of the 8th USENIX Symposium on File and Storage Technolo-

gies (FAST’10). San Jose, CA, 29–42.

[63] Yiying Zhang and Steven Swanson. 2015. A study of application performance with non-volatile main memory. In

Proceedings of the 31st IEEE Conference on Massive Data Storage (MSST’15). Santa Clara, CA, 1–10.

Received November 2020; accepted February 2021

ACM Transactions on Storage, Vol. 17, No. 2, Article 12. Publication date: June 2021.

https://archive.fosdem.org/2019/schedule/event/postgresql_fsync/
https://archive.fosdem.org/2019/schedule/event/postgresql_fsync/

