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Abstract
Modern distributed storage systems employ complex
protocols to update replicated data. In this paper, we
study whether such update protocols work correctly in
the presence of correlated crashes. We find that the
correctness of such protocols hinges on how local file-
system state is updated by each replica in the system.
We build PACE, a framework that systematically gener-
ates and explores persistent states that can occur in a
distributed execution. PACE uses a set of generic rules
to effectively prune the state space, reducing checking
time from days to hours in some cases. We apply PACE

to eight widely used distributed storage systems to find
correlated crash vulnerabilities, i.e., problems in the up-
date protocol that lead to user-level guarantee violations.
PACE finds a total of 26 vulnerabilities across eight sys-
tems, many of which lead to severe consequences such
as data loss, corrupted data, or unavailable clusters.

1 Introduction
Modern distributed storage systems are central to large
scale internet services [19,22,28,66]. Important services
such as photo stores [74,77,79], e-commerce [61], video
stores [27], text messaging [82], social networking [93],
and source repositories [78] are built on top of mod-
ern distributed storage systems. By providing replica-
tion, fault tolerance, high availability, and reliability, dis-
tributed storage systems ease the development of com-
plex software services [17, 31, 59, 75].

Reliability of user data is one of the most important
tenets of any storage system [3, 41, 49, 69]. Distributed
storage systems improve reliability by replicating data
over a collection of servers [7, 13, 63, 80, 84, 89, 91].

To safely replicate and persist application data, mod-
ern storage systems implement complex data update pro-
tocols. For example, ZooKeeper [5] implements an
atomic broadcast protocol and several systems including
LogCabin [57] and etcd [23] implement the Raft con-
sensus protocol to ensure agreement on application data

between replicas. Although the base protocols (such as
atomic broadcast [12], Raft [68], or Paxos [51]) are prov-
ably correct, implementing such a protocol without bugs
is still demanding [16, 36, 42, 44, 94], especially when
machines can crash at any instant [53].

Many distributed storage systems can recover from
single node or partial cluster failures. In this study, we
consider a more insidious crash scenario in which all
replicas of a particular data shard crash at the same time
and recover at a later point. We refer to such crash
scenarios as correlated failures. Correlated failures are
common and several instances of such failures have been
reported in the recent past [11,20,21,25,26,35,43,49,65,
92]; these failures occur due to root causes such as data-
center-wide power outages [38], operator errors [97],
planned machine reboots, or kernel crashes [35].

When nodes recover from a correlated failure, the
common expectation is that the data stored by the dis-
tributed system would be recoverable. Unfortunately,
local file systems (which store the underlying data and
metadata of many distributed storage systems) compli-
cate this situation. Recent research has shown that file
systems vary widely with respect to how individual op-
erations are persisted to the storage medium [70]. For
example, testing has revealed that in ext4, f2fs [8], and
u2fs [58], one cannot expect the following guarantee: a
file always contains a prefix of the data appended to it
(i.e., no unexpected data or garbage can be found in the
appended portion) after recovering from a crash. The
same test also shows that this property may be held by
btrfs and xfs. Since most practical distributed systems
run atop local file systems [47,62,81], it is important for
them to be aware of such behaviors. These file-system
nuances can result in unanticipated persistent states in
one or more nodes when a distributed storage system re-
covers from a correlated crash.

Recent studies [14, 70] have demonstrated that these
widely varying file-system behaviors increase the com-
plexity of building a crash-consistent update protocol,



even for single machine applications such as SQLite. We
refer to this form of crash consistency as single-machine
(application-level) crash consistency.

Distributed storage systems have to deal with the com-
plexity of building a crash-consistent storage update pro-
tocol in addition to correctly implementing a distributed
agreement and recovery protocol. We refer to this form
of crash consistency in a distributed setting as correlated
crash consistency. Although the challenges of build-
ing a crash-consistent distributed update protocol have
the same flavor as building a crash-consistent single-
machine protocol, correlated crash consistency is a fun-
damentally different problem for three reasons.

First, distributed systems can fail in more ways than a
single machine system. Since a distributed system con-
stitutes many components, a group of components may
fail together at the same or different points in the pro-
tocol. Second, unique opportunities and problems exist
in distributed crash recovery; after a failure, it is possi-
ble for one node in an inconsistent state to repair its state
by contacting other nodes or to incorrectly propagate the
corruption to other nodes. In contrast, single-machine
applications rarely have external help. Third, crash re-
covery in a distributed setting has many more possible
paths than single-machine crash recovery as distributed
recovery depends on states of many nodes in the system.

We say a distributed system has a correlated crash vul-
nerability if a correlated crash during the execution of the
system’s update protocol (and subsequent recovery) ex-
poses a user-level guarantee violation. In this paper, we
examine whether distributed storage systems are vulner-
able to correlated crashes. To do this, we introduce PACE,
a novel framework that systematically explores corre-
lated crash states that occur in a distributed execution.

PACE considers consistent cuts in the distributed ex-
ecution and generates persistent states corresponding to
those cuts. PACE models local file systems at individual
replicas using an abstract persistence model (APM) [70]
which captures the subtle crash behaviors of a particular
file system. PACE uses protocol-specific knowledge to re-
duce the exploration state space by systematically choos-
ing a subset of nodes to introduce file-system nuances
modeled by the APM. In the worst case, if no attributes
of a distributed protocol are known, PACE can operate in
a slower brute-force mode to still find vulnerabilities.

We applied PACE to eight widely used distributed
storage systems spanning important domains includ-
ing database caches (Redis [76]), configuration stores
(ZooKeeper [5], LogCabin [57], etcd [23]), real-time
databases (RethinkDB [83]), document stores (Mon-
goDB [60]), key-value stores (iNexus [46]), and dis-
tributed message queues (Kafka [6]).

We find that many of these systems are vulnerable to
correlated crashes. Modern distributed storage systems

expect certain guarantees from file systems such as or-
dered directory operations and atomic appends for their
local update protocols to work correctly. We also find
that in many cases global recovery protocols do not use
intact replicas to fix the problematic nodes. PACE found a
total of 26 vulnerabilities that have severe consequences
such as data loss, silent corruption, and unavailability.
We also find that many vulnerabilities can be exposed
on commonly used file systems such as ext3, ext4, and
btrfs. We reported 18 of the discovered vulnerabilities
to application developers. Twelve of them have been
already fixed or acknowledged by developers. While
some vulnerabilities can be fixed by straightforward code
changes, some are fundamentally hard to fix.

Our study also demonstrates that PACE is general: it
can be applied to any distributed system; PACE is sys-
tematic: it explores different systems using general rules
that we develop; PACE is effective: it found 26 unique
vulnerabilities across eight widely used distributed sys-
tems. PACE’s source code and details of the discovered
vulnerabilities are publicly available [2].

The rest of the paper is organized as follows. We
first describe correlated crash consistency in detail (§2).
Next, we explain how PACE works and how it uses
protocol-awareness to systematically reduce exploration
state space (§3). Then, we present our study of correlated
crash vulnerabilities in distributed storage systems (§4).
Finally, we discuss related work (§5) and conclude (§6).

2 Correlated Crash Consistency
Building a crash-consistent distributed update protocol is
complex for two reasons: machines can crash at any time
in a correlated fashion and updates to the local file sys-
tem have to be performed carefully to recover from such
crashes. Given this complexity, we answer the following
question in this paper: Do modern distributed storage
systems implement update and recovery protocols that
function correctly when nodes crash and recover in a
correlated fashion, or do they have vulnerabilities? To
answer this question, we first describe the failure model
that we consider and build arguments for why the con-
sidered failure model is important. Next, we explain the
system states we explore to find if a distributed update
protocol has correlated crash vulnerabilities.

2.1 Failure Model
Components in a distributed system can fail in various
ways [39]. Most practical systems do not deal with
Byzantine failures [52] where individual components
may give conflicting information to different parts of the
system. However, they handle fail-recover failures [39]
where components can crash at any point in time and re-
cover at any later point in time, after the cause of the
failure has been repaired. When a node crashes and re-



covers, all its in-memory state is lost; the node is left
only with its persistent state. Our study considers only
such fail-recover failures.

A common expectation is that practical distributed
systems would not violate user-level guarantees in the
face of such fail-recover failures. However, nuances in
local file system can cause unanticipated persistent states
to arise after a crash and a subsequent reboot, compli-
cating proper recovery. We explain such nuances in lo-
cal file-system behaviors later (§2.2.2). Notice that this
is how one individual node crashes and recovers; other
nodes may continue to function and make progress.

Our failure model concentrates on a more devastating
scenario where all or a group of nodes crash and recover
together. We refer to this type of failure as a correlated
crash. Specifically, we focus on two kinds of correlated
crash scenarios: first, data-center-wide power outages
where all machines in the cluster crash and recover to-
gether; second, correlated failures where only a group of
machines containing all replicas for a shard of data crash
and recover together and other machines (that are not part
of the shard) in the cluster do not react to the failure.

Large-scale correlated failures such as cluster-wide
power outages are common and occur in the real
world [11,20,21,25,26,35,43,49,65,92]. For example, a
recent study from Google [35] showed that node failures
in Google data centers are often correlated and the causes
of node failures fall into three categories: application
restarts, planned machine reboots, and unplanned ma-
chine reboots. From data over a period of three months,
the study showed that as many as 15 unplanned reboots
and 30 planned reboots per 1000 machines can happen
in a single day. Also, a failure burst in one instance of
a distributed file system [37] can take down as many as
50 machines at almost the same time. This kind of fail-
ure typically can be seen during a power outage in a data
center. Rolling kernel upgrades also cause failure bursts
that can take down around 20 machines within a short
window of time.

Although the system cannot progress when all replicas
crash, the common expectation is that the data stored by
the storage system will be recoverable after the replicas
come alive (for example, after power has been restored).

Our failure model is not intended to reason about sce-
narios where only a subset of replicas of a particular data
shard crash and recover by themselves. Also, the vul-
nerabilities we find with our correlated failure model do
not apply to a geo-replicated setting; in such a setting,
conscious decisions place replicas such that one power
failure cannot affect all replicas at the same time. While
correlated failures are less problematic in such settings,
the storage systems we examine in this study are heavily
tested and the common expectation is that these systems
should be reliable irrespective of how they are deployed
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Figure 1: A simple distributed protocol. The figure shows
a simple distributed protocol. Annotations show the persistent state
after performing each operation. Dash dot lines show different cuts.

and the probability of failures. Further, many deploy-
ments are not geo-replicated and thus may expect strong
guarantees even in the presence of correlated crashes.
Overall, crash-correctness should be deeply ingrained in
these systems regardless of deployment decisions.

2.2 Distributed Crash States
Now we explain the global system states that result due
to correlated crashes. As we explained, after a crash
and subsequent reboot, a node is left only with its per-
sistent data. The focus of our study is in checking only
the resulting persistent states when failures happen. The
global states that we capture are similar to distributed
snapshots [18] described by Chandy and Lamport. The
main difference between a generic distributed snapshot
and a global persistent state is that the latter consists only
of the on-disk state and not the in-memory state of the
machines. Moreover, since network channels do not af-
fect persistent on-disk state, our global persistent states
do not keep track of them.

To understand the persistent states that we capture,
consider a cluster of three machines named A, B, and
C. Assume that the initial persistent states of these ma-
chines are Aφ , Bφ , and Cφ , respectively. Assume that a
workload W run on this cluster transitions the persistent
states to A f , B f , and C f , respectively. For instance, W
could be a simple workload that inserts a new key-value
pair into a replicated key-value store running on A, B,
and C. Notice that the persistent state of all nodes goes
through a transition before arriving at the final states A f ,
B f , and C f . A correlated crash may happen at any time
while W runs, and after a reboot, the persistent state of
a node X may be any intermediate state between Xφ and
X f where X can be A or B or C. For simplicity, we refer
to this collection of persistent states across all nodes as
global persistent state or simply global state. If a partic-
ular global state G can occur in an execution, we call G
a reachable global state.

2.2.1 Reachable Global States
The reachability of a global state depends on two fac-
tors: the order in which messages are exchanged between



nodes and the local file systems of the nodes. To illustrate
the first factor, consider a distributed protocol shown in
Figure 1. In this protocol, node P starts by sending mes-
sage M1, then writes foo and baz to a file, and then
sends another message M2 to node Q. Node Q receives
M1 and M2 and then writes bar to a file. For now, as-
sume that the toy application is single threaded and all
events happen one after the other. Also assume that the
file system at P and Q is synchronous (i.e., operations are
persisted in order to the disk). We will soon remove the
second assumption and subsequently the first (§3.2).

Assume that the initial persistent state of P was Pφ and
Q was Qφ . After performing the first and second write, P
moves to P1 and P2, respectively. Similarly, Q moves to
Q1 after performing the write. Notice that <Pφ ,Qφ> is a
reachable global persistent state as P could have crashed
before writing to the file and Q could have crashed before
or after receiving the first message. Similarly, <P2,Q1>
and <P2,Qφ> are globally reachable persistent states.

In contrast, <Pφ ,Q1> and <P1,Q1> are unreachable
persistent states as it is not possible for Q to have written
the file without P sending the message to it. Intuitively,
global states that are not reachable in an execution are
logically equivalent to inconsistent cuts in a distributed
system [10]. For example, <Pφ ,Q1> and <P1,Q1> are
inconsistent cuts since the recv of M2 is included in the
cut but the corresponding send is excluded from the cut.
Also, network operations such as send and recv do not
affect the persistent state. For example, the three differ-
ent cuts shown in Figure 1 map onto the same persistent
state <Pφ ,Qφ>.

Next, we consider the fact that the local file systems at
P and Q also influence the global states. Assume that the
application is still single threaded but writes issued by
an application can be buffered in memory as with mod-
ern file systems. Depending on which exact file system
and mount options are in use, modern file systems may
reorder some (or many) updates [9, 70, 73]. With this
asynchrony and reordering introduced by the file system,
it is possible for the second write baz to reach the disk
before the first write foo. Also, it is possible for P to
crash after baz is persisted and the message is sent to Q,
but before foo reaches the disk. In such a state of P, it
is possible for Q to have either reached its final state Q1
or crash before persisting bar and so remain in Qφ . All
these states are globally reachable.

2.2.2 File-system Behavior
The reordering of writes by the file system is well un-
derstood by experienced developers. To avoid such re-
ordering, developers force writes to disk by carefully is-
suing fsync on a file as part of the update protocol.
Although some common behaviors such as reordering
of writes are well understood, there are subtle behaviors

that application developers find hard to reason about. For
example, the following subtle behavior is not well doc-
umented: if a crash happens when appending a single
block of data to a file in ext4 writeback mode, the file
may contain garbage on reboot. These behaviors are nei-
ther bugs nor intended features, but rather implications
of unrelated performance improvements. To worsen the
problem, these subtle behaviors vary across file systems.

Recent research [4,14,70–72] classifies file-system be-
haviors into two classes of properties: atomicity and or-
dering. The atomicity class of properties say whether a
particular file system must persist a particular operation
in an atomic fashion in the presence of crashes. For in-
stance, must ext2 perform a rename in an atomic way
or can it leave the system in any intermediate state? The
ordering class of properties say whether a particular file
system must persist an operation A before another oper-
ation B. For instance, must ext4 (in its default mode) or-
der a link and a write operation? While ext4 orders
directory operations and file write operations, the same
does not hold true with btrfs which can reorder directory
operations and write operations.

Given these variations across file systems and some-
times even across different configurations of the same
file system, it is onerous to implement a crash-consistent
protocol that works correctly on all file systems. Recent
research has discovered that single-machine applications
have many vulnerabilities in their update protocols which
can cause them to corrupt or lose user data [4, 70, 98].

Distributed storage systems also face the same chal-
lenge as each replica uses its local file system to store
user data and untimely crashes may leave the applica-
tion in an inconsistent state. However, distributed sys-
tems have more opportunities for recovery as redundant
copies of data exist on other nodes.

3 Protocol-Aware Crash Explorer
To examine if distributed storage systems violate user-
level guarantees in correlated crash scenarios, we build
a generic correlated crash exploration framework, PACE,
which systematically generates persistent states that can
occur in a distributed execution in the presence of cor-
related crashes. We note here that PACE is not intended
to catch bugs in distributed consensus protocols. Specif-
ically, it does not exercise reordering of network mes-
sages to explore corner cases in consensus protocols; as
explained later (§5), distributed model checkers attack
this problem. PACE’s intention is to examine the interac-
tion of global crash recovery protocols and the nuances
in local storage protocols (introduced by each replica’s
local file system), in the presence of correlated crashes.

Some vulnerabilities that we discover are exposed
only if a particular file-system operation is reordered on
all replicas while some vulnerabilities are exposed even



when the reordering happens on a single replica. Using
observations from how vulnerabilities are exposed and a
little knowledge about the distributed protocol, we make
our exploration protocol-aware. Using this awareness,
PACE can prune the search space while finding as many
vulnerabilities as a brute-force search. To explain how
protocol-aware exploration works, we first describe the
design of our crash exploration framework.

3.1 Design and Implementation Overview
PACE is easy to use and can be readily applied to any dis-
tributed storage system. PACE needs a workload script
and a checker script as inputs. For many modern dis-
tributed systems, a group of processes listening on dif-
ferent ports can act as a cluster of machines. For systems
that do not allow this convenience, we use a group of
Docker [30] containers on the same machine to serve as
the cluster. In either case, PACE can test the entire sys-
tem on a single machine. PACE is implemented in around
5500 lines of code in Python.

To begin, PACE starts the cluster with system call trac-
ing, runs the workload, and then stops the cluster after
the workload is completed. PACE parses the traces ob-
tained and identifies cross node dependencies such as a
send on one node and the corresponding recv on some
other node. After the traces are parsed and cross node
dependencies established, PACE replays the trace to gen-
erate different persistent crash states that can occur in
the traced execution. A system-specific checker script
is run on top of each crash state; the checker script as-
serts whether user-level guarantees (e.g., committed data
should not be corrupted or lost) hold. Any violations in
such assertions are reported as vulnerabilities. We next
discuss what correlated crash states can occur in a dis-
tributed execution and how we generate them.

3.2 Crash States
We use a running example of a ZooKeeper cluster exe-
cuting an update workload for further discussion. PACE

produces a diagrammatic representation of the update
protocol as shown in Figure 2.

First, the client contacts the leader in the ZooKeeper
cluster. The leader receives the request and orchestrates
the atomic broadcast protocol among its followers as
shown by send and recv operations and careful up-
dates to the file system (write and fdatasync on a
log file that holds user data). Finally, after ensuring that
the updated data is carefully replicated and persisted, the
client is acknowledged. At this point, it is guaranteed
that the data will be consistent and durable.

Note that each node runs multiple threads and the fig-
ure shows the observed order of events when the traces
were collected. If arbitrary delays were introduced, the
order may or may not change, but this observed order is
one schedule among all such possible schedules.
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Figure 2: ZooKeeper protocol for an update work-
load. The figure shows the sequence of steps when the client in-
teracts with the ZooKeeper cluster. The workload updates a value. The
client prints to stdout once the update request is acknowledged.

We reiterate here that PACE captures crash states that
occur due to a correlated failure where all replicas fail
together. PACE is not intended to reason about partial
crashes where only a subset of replicas crash.

3.2.1 Globally Reachable Prefixes
Assume that all nodes shown in Figure 2 start with per-
sistent state Xφ where X is the node identifier with L
for leader, C for client, and so forth. MXYi is the ith

message sent by X to Y . All operations that affect per-
sistent state are annotated with the persistent state to
which the node transitions by performing that opera-
tion. For example, the leader transitions to state L1 after
the first write to a file. The total set of global per-
sistent states is the cross product of all local persistent
states. Precisely, the total set is the cross product of the
sets {Cφ ,C1}, {Lφ ,L1,L2,L3,L4}, {Pφ ,P1,P2,P3,P4} and
{Qφ ,Q1,Q2,Q3,Q4}. However, some of the global states
in this resultant set cannot occur in the distributed execu-
tion. For example, <Cφ ,L2, P2, Q1> is an inconsistent
cut and cannot occur as a global state since it is not pos-
sible for Q to receive MPQ3 before P reaches P3 and then
sends MPQ3.

We refer to a global state that is reachable in this trace
as a globally reachable persistent prefix or simply glob-
ally reachable prefix. We call this a prefix as it is a prefix
of the file-system operations within each node.

Previous work [70] has developed tools to uncover
single-machine crash vulnerabilities. Such tools trace
only file-system related system calls and do not trace net-
work operations. Hence, they cannot capture dependen-
cies across different nodes in a distributed system. Such
tools cannot be directly applied to distributed systems; if
applied, they may generate states that may not actually



occur in a distributed execution and thus can report spu-
rious vulnerabilities. On the other hand, PACE captures
all cross node dependencies and so generates only states
that can occur in a distributed execution.

3.2.2 File-system Persistence Models
Generating globally reachable prefixes does not require
any knowledge about how a particular file system per-
sists operations. As we discussed, file systems exhibit
important behaviors with respect to how operations are
persisted. We borrow the idea of abstract persistence
model (APM) from our previous work [70] to model the
file system used by each node.

An APM specifies all constraints on the atomicity and
ordering of file-system operations for a given file sys-
tem, thus defining which crash states are possible. For
example, in an APM that specifies the ext2 file system,
appends to a file can be reordered and the rename op-
eration can be split into smaller operations such as delet-
ing the source directory entry and creating the target di-
rectory entry. In contrast, in the ext3 (data-journaling)
APM, appends to a file cannot be reordered and the
rename operation cannot be split into smaller opera-
tions. An APM for a new file system can be easily de-
rived using the block order breaker (BOB) tool [70].

PACE considers all consistent cuts in the execution to
find globally reachable prefixes. On each such globally
reachable prefix, PACE applies the APM (that specifies
what file-system specific crash states are possible) to pro-
duce more states. The default APM used by PACE has
few restrictions on the possible crash states. Intuitively,
our default APM models a file system that provides the
least guarantees when crashes occur but is still POSIX
compliant. For simplicity, we refer to file-system related
system calls issued by the application as logical opera-
tions and the smaller operations into which each logical
operation is broken down as micro operations. We now
describe our default APM.
Atomicity of operations. Applications may require a
single logical operation such as append or overwrite
to be atomically persisted for correctness. In the de-
fault APM used by PACE, all logical operations are bro-
ken into the following micro operations: write block,
change size, create dir entry, and delete dir entry. For
example, a logical truncate of a file will be broken
into change size followed by write block(random) fol-
lowed by write block(zeroes). Similarly, a rename
will be broken into delete dir entry(dest) + truncate
if last link followed by create dir entry(dest) followed
by delete dir entry(src). Overwrites, truncates, and ap-
pends are split into micro operations aligned at the block
boundary or simply into three micro operations. PACE

can generate crash states corresponding to different in-
termediate states of the logical operation.

Ordering between operations. Applications may re-
quire that a logical operation A be persisted before an-
other logical operation B for correctness. To reorder op-
erations, PACE considers each pair of operations (A, B)
and applies all operations from the beginning of the trace
until B except for A. This reordering produces a state cor-
responding to the situation where the node crashes after
all operations up to B have been persisted but A is still not
persisted. The ordering constraint for our default APM is
as follows: all operations followed by an fsync on a file
or directory F are ordered after the operations on F that
precede the fsync.

We now describe how applying an APM produces
more states on a single machine. Consider the
ZooKeeper protocol in which <Cφ , L1, P2, Qφ> is a
globally reachable prefix. P has moved to P2 by apply-
ing two write operations starting from its initial state
Pφ . On applying the default APM onto the above pre-
fix, PACE recognizes that on node P it is possible for the
second write to reach the disk before the first one (by
considering different ordering between two operations).
Hence, it can reorder the first write after the second write
on P. This resultant state is different from the prefix. In
this resultant state, after recovery, P will see a file-system
state where the second write to the log is persisted but
effects of the first write are missing. If there were an
fsync or fdatasync after the first write, then the de-
fault APM cannot and will not reorder the two write op-
erations. This reordering is within a single node; similar
reorderings can be exercised on all nodes.

Depending on the APM specification, logical opera-
tions can be partially persisted or reordered or both at
each node in the system. Intuitively, applying an APM
on a global prefix relaxes its constraints. This relax-
ation allows the APM to partially persist logical opera-
tions (atomicity) or reorder logical operations with one
another (ordering). We refer to the relaxations allowed
by an APM as APM-allowed relaxations or simply APM
relaxations. For simplicity, we refer to this process of
relaxing the constraints (by reordering and partially per-
sisting operations) as applying that particular relaxation.

PACE can be configured with any APM. We find the
most vulnerabilities with our default and ext2 APMs. We
also report the vulnerabilities when PACE is configured
with APMs of other commonly used file systems.

3.3 Protocol-Aware Exploration
While applying relaxations on a single node results in
many persistent states for that node, PACE needs to con-
sider applying different relaxations across every com-
bination of nodes to find vulnerabilities. As a conse-
quence, there are several choices for how PACE can ap-
ply relaxations. Consider a five node cluster and assume
that n relaxations are possible in one node. Then, as-



1    creat(v/log)
2   append(v/log, 16)
3   trunc(v/log, 16399)
4   append(v/log, 1)
5   write(v/log, 49)
6   fdatasync(v/log)
7   write(v/log, 12)
8   write(v/log, 16323)
9   append(v/log, 4209)
10 append(v/log, 1)

11 fdatasync(v/log)
12 ACK Client

1    creat(v/log)
2   append(v/log, 16)
3   trunc(v/log, 16399)
4   append(v/log, 1)
5   write(v/log, 49)
6   fdatasync(v/log)
7   write(v/log, 12)
8   write(v/log, 16323)
9   append(v/log, 4209)
10 append(v/log, 1)
11   fdatasync(v/log)
12  ACK Client

(a) (b)

Figure 3: Local file-system update protocol on a single
ZooKeeper node. The figure shows the sequence of file-system
operations on a single ZooKeeper node. Operations 1 through 6 hap-
pen on node initialization and operations 7 through 12 when the client
starts interacting. Several operations that happen on initialization are
not shown for clarity. (a) and (b) show two different crash scenarios.
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combining the relaxations across nodes. Even for a mod-
erate n such as 20, there are close to 4 million states. A
brute-force approach would explore all such states. We
now explain how PACE prunes this space by using knowl-
edge about the distributed protocols (such as agreement
and leader election) employed by a system.

3.3.1 Replicated State Machine Approaches
We use the same ZooKeeper traces shown in Figure 2 for
this discussion. For simplicity, we assume that there are
odd number of nodes in the system.

ZooKeeper implements an atomic broadcast proto-
col which is required to run a replicated state machine
(RSM) [45, 68, 90]. There are various paradigms to im-
plement an RSM some of which include Paxos [51],
Raft [68], and atomic broadcast [24]. Google’s
Chubby [15] implements a Paxos-like algorithm and
LogCabin [57] implements Raft. An RSM system as a
whole should continue to make progress as long as a ma-
jority of the nodes are operational and can communicate
with each other and the clients [68].

Figure 3(a) shows the file-system operations on a sin-
gle ZooKeeper node; network operations are not shown
for clarity. The tenth operation appends one byte to the
log to denote the commit of a transaction after which the
file is forced to disk by the fdatasync call. It is pos-
sible for the tenth operation to reach the disk before the
ninth operation and a crash can happen at this exact point
before the fdatasync call. After this crash and subse-
quent restart, ZooKeeper would fail to start as it detects
a checksum mismatch for the data written, and the node
becomes unusable. The same reordering can happen on
all nodes, rendering the entire cluster unusable.

In the simple case where this reordering happens on
only one node, even though that single node would fail

to start, the other two nodes still constitute a majority and
so can elect a leader and make progress. PACE uses this
knowledge about the protocol to eliminate testing cases
where a reordering happens on only one node. Also, it is
unnecessary to apply the relaxation on all three nodes as
the cluster can become unavailable even when the relax-
ation is applied on just a majority (any two) of the nodes.

As another example, consider the same protocol but
with a different crash that happens after the client is ac-
knowledged, as shown in Figure 3(b). Once acknowl-
edged, ZooKeeper guarantees that the data is replicated
and persisted to disk on a majority of nodes. The direc-
tory entry for the log file has to be persisted explicitly
by performing an fsync on the parent directory [1, 70]
to ensure that the log file is present on disk even after a
crash. However, ZooKeeper does not fsync the parent
directory and so it is possible for the log file to go miss-
ing after a crash. On a single node, if the log file is lost,
it does not lead to user-visible global data loss as the ma-
jority still has the log file. Similar to the unavailability
case, a global data loss can happen if the same reorder-
ing happens on a majority of nodes even if the data exists
on one other node where this reordering did not happen.

Thus, we observe that in any RSM system, it is re-
quired that a particular APM relaxation is applied on at
least a majority of nodes for a vulnerability to be exposed
globally. Also, it is unnecessary to apply an APM relax-
ation on all possible majority choices; for example, in a
system with five nodes, applying a relaxation on three,
four, or five nodes (all of which represent a majority)
will expose the same vulnerability. This knowledge is
not system-specific, but rather protocol-specific.
System-independent. LogCabin is a system similar to
ZooKeeper that provides a configuration store on top of
the consensus module but uses the Raft protocol to im-
plement an RSM. When applying a particular APM re-
laxation, LogCabin can lose data. For this data loss vul-
nerability to be exposed, the relaxation has to be applied
on at least a majority of the nodes. This observation is
not specific to a particular system; rather, it holds true
across ZooKeeper and LogCabin because both systems
are RSM protocol implementations.

Using our observation, we derive the following rule
that helps PACE eliminate a range of states: For any RSM
system with N replicas, check only states that would re-
sult when a particular APM relaxation is applied on an
exact majority (where exactly dN/2e servers are chosen
from N) of the nodes. Note that there are

( N
dN/2e

)
ways of

choosing the exact majority.
We note that the pruning rule does not guarantee find-

ing all vulnerabilities. It works because it makes an im-
portant assumption: the base consensus protocol is im-
plemented correctly. PACE is not intended to catch bugs
in consensus protocol implementations.



We now make a further observation about RSM pro-
tocols that can further reduce the state space. Consider
the data loss vulnerability shown in Figure 3(b). Sur-
prisingly, sometimes a global data loss may not be ex-
posed even when the reordering happens on a majority.
To see why, consider that the current leader (L) and the
first follower (P) lose the log file as the creat operation
is not persisted before the crash. In this case, the major-
ity has lost the file. On recovery, the possibility of global
data loss depends on who is elected as the leader the next
time. Specifically, the data will be lost, if either L or P is
elected as the new leader. On the other hand, if the sec-
ond follower Q is elected as the leader, then the data will
not be lost. In effect, the data will be lost if a node that
lost its local data becomes the leader the next time, irre-
spective of the presence of the same data on other nodes.

In Raft, on detecting an inconsistency, the followers
are forced to duplicate the leader’s log (i.e., the log en-
tries flow only outward from the leader) [68]. This en-
forcement is required to satisfy safety properties of Raft.
While ZooKeeper’s atomic broadcast (ZAB) does not ex-
plicitly specify if the log entries only flow outward from
the leader, our experiments show that this is the case.
Previous work also supports our observation [68].

This brings a question that counters our observation:
Why not apply the relaxation on any one node and make
it the leader during recovery? Consider the reordering
shown in Figure 3(b). If this reordering happens on one
node, that node will lose the log; it is not possible for this
node to be elected the leader as other nodes would notice
that this node has missing log entries and not vote for it.
If this node is not elected the leader, then local data loss
would not result in global data loss.

In contrast, if the log is lost on two nodes, the two
nodes still constitute a majority and so one of them can
become the leader and therefore override the data on the
third node causing a global data loss. However, it is pos-
sible for the third node Q, where the data was not lost, to
become the leader and so hide the global data loss.

Given this information, we observe that it is required
only to check states that result from applying a partic-
ular APM relaxation on any one exact majority of the
nodes. In a cluster of five nodes, there are

(5
3

)
= 10 ways

of choosing an exact majority and it is enough to check
any one combination from the ten. To effectively test if a
global vulnerability can be exposed, we strive to enforce
the following: when the cluster recovers from a crashed
state, if possible, the leader should be elected from the set
of nodes where the APM relaxation was applied. Some-
times the system may constrain us from enforcing this;
however, if possible, we enforce it automatically to drive
the system into vulnerable situations.

From the two observations, we arrive at two sim-
ple, system-independent, and protocol-aware exploration

rules employed by PACE to prune the state space and ef-
fectively search for undesired behaviors:

• R1: For any RSM system with N servers where fol-
lowers duplicate leader’s log, generate states that
would result if a particular APM relaxation is applied
on any exact majority of the servers.

• R2: For all states generated using R1, if possible,
enforce that the leader is elected from exact majority
in which the APM relaxation was applied.

Since we did not see popular practical systems that
use RSM approaches where log entries can flow in both
directions like in Viewstamped replication [55, 67] or
where there can be multiple proposers at the same time
like in Paxos, we have not listed the rules for them. We
leave this generalization as an avenue for future work.

3.3.2 Other Replication Schemes
PACE also handles replicated systems that do not use
RSM approaches: Redis, Kafka, and MongoDB. Appli-
cations belonging to this category do not strictly require
a majority for electing a leader and committing transac-
tions. For example, in Redis’ default configuration, the
master is fixed and cannot be automatically re-elected
by a majority of slaves if the master fails. Moreover,
it is possible for the master to make progress without the
slaves. Similarly, Kafka maintains a metadata structure
called the in-sync replicas and any node in this set can
become the leader without consent from the majority.

Systems belonging to this category typically force
slaves to sync data from the master. Hence, any prob-
lem in the master can easily propagate to the slaves. This
hints that applying APM relaxations on the master is nec-
essary. Next, since our workloads ensure that the data is
synchronously replicated to all nodes, it is unacceptable
to read stale data from the slaves once an acknowledg-
ment is received. This hints that applying APM relax-
ations on any slave and subsequent reads from the slave
can expose the stale data problem. Since systems of this
type can make progress even if one node is up, we need to
apply APM relaxations on all the nodes to expose cluster
unavailability vulnerabilities.

For applications of this type, PACE uses a combination
of the following rules to explore the state space:

• R3: Generate states that result when a particular re-
laxation is applied on the master.

• R4: Generate states that result when a particular re-
laxation is applied on any one slave.

• R5: Generate states that result when a particular re-
laxation is applied on all nodes at the same time.

In Redis, we use R3 and R4 but not R5: we use R3
to impose APM relaxations only on the master because
the cluster can become unavailable for writes if only the
master fails; we use R4 as reads can go to slaves. Simi-



larly, in Kafka, we use R3 and R5 and not R4: we do not
use R4 because all reads and writes go only through the
leader; we use R5 to test states where the entire cluster
can become unavailable because the cluster will be us-
able even if one node functions. MongoDB can be con-
figured in many ways. We configure it much like an RSM
system where it requires a majority for leader election
and writes; hence, we use R1 and R2.

Examining a new distributed system with PACE re-
quires developers to only understand whether the system
implements a replicated state machine or not and how
the master election works. Once this is known, PACE can
be easily configured with the appropriate set of pruning
rules. We believe that PACE can be readily helpful to de-
velopers given that they already know their system’s pro-
tocols. We reiterate that the pruning rules do not guaran-
tee finding all vulnerabilities; rather, they provide a set of
guidelines to quickly search for problems. In the worst
case, if no properties are known about a protocol, PACE

can work in brute-force mode to find vulnerabilities.

3.3.3 Effectiveness of Pruning
To demonstrate the effectiveness of our pruning rules, we
explored crash states of Redis and LogCabin with PACE

and the brute-force approach. In Redis, for a simple
workload on a three node cluster, brute-force needs to
check 11,351 states whereas PACE only needs to check
1009 states. While exploring 11× fewer states, PACE

found the same three vulnerabilities as the brute-force
approach. In LogCabin, PACE discovers two vulnerabil-
ities, checking 27,713 states in eight hours; the brute-
force approach did not find any new vulnerabilities after
running for over a week and exploring nearly 900,000
states. The reduction would be more pronounced as the
number of nodes in a system increases.

3.4 Limitations and Caveats
PACE is not complete – it can miss vulnerabilities. Specif-
ically, PACE exercises only one and the same reordering
at a time across the set of nodes. For instance, consider
two reorderings ri and r j. It is possible that no vulner-
ability is seen if ri or r j is applied individually on two
nodes. But when ri is applied on one node and r j on the
other, then it may lead to a vulnerability. PACE would
miss such vulnerabilities. Note that if ri and r j can both
individually cause a vulnerability, then PACE would catch
both of them individually. This is a limitation in imple-
mentation and not a fundamental one. There is no similar
limitation with partially persisting operations (i.e., PACE

can partially persist different operations across nodes).
Also, PACE does not focus on finding bugs in agreement
protocols. We expand more on this topic later ( §5).

System Configuration Workload Checker

Redis
appendfsync=always,

min-slaves-to-write=2
and wait

update existing
old and new data

(master and slave),
check-aof, check-dump

ZooKeeper Default update existing old and new data
LogCabin Default update existing old and new data

etcd Default update existing old and new data

RethinkDB durability=hard,
writeack=majority

update existing,
insert new old and new data

MongoDB W=3, journal=true update existing old and new data

iNexus Default update existing,
insert new old and new data

Kafka
flush.interval.msgs=1,
min in-sync replicas=3,

DirtyElection=False

create topic,
insert message topic and message

Table 1: Configurations, Workloads, and Checkers.
The table shows the configuration, workloads and checkers for each
system. We configured all systems with three nodes. The configuration
settings ensure data is synchronously replicated and flushed to disk.

4 Application Vulnerabilities Study
We studied eight widely used distributed systems span-
ning different domains including database caches (Re-
dis v3.0.4), configuration stores (ZooKeeper v3.4.8, Log-
Cabin v1.0.0, etcd v2.3.0), real-time databases (Re-
thinkDB v2.2.5), document stores (MongoDB v3.0.11),
key-value stores (iNexus v0.13), and message queues
(Kafka v0.9.0). We tested MongoDB with two stor-
age engines: WiredTiger [64] (MongoDB-WT) and
RocksDB [86] (MongoDB-R). PACE found 26 unique
vulnerabilities across the eight systems.

We first describe the workloads and checkers we used
to detect vulnerabilities (§4.1). We then present a few ex-
ample protocols and vulnerabilities to give an intuition of
our methodology and the types of vulnerabilities discov-
ered (§4.3). We then answer three important questions:
Are there common patterns in file-system requirements
(§4.4)? What are the consequences of the vulnerabilities
discovered by PACE (§4.5)? How many vulnerabilities
are exposed on real file systems (§4.6)? We then de-
scribe our experience with reporting the vulnerabilities
to application developers (§4.7). We finally conclude by
discussing the implications of our findings and the diffi-
culties in fixing the discovered vulnerabilities (§4.8).

4.1 Application Workloads and Checkers
Most systems have configuration options that change
user-level guarantees. We configured each system to
provide the highest level of safety guarantees possible.
When guarantees provided are unclear, our checkers
check for typical user expectations; for example, data ac-
knowledged as committed should not be lost in any case
or the cluster should be available after recovering from
crashes. Even though some applications do not explic-
itly guarantee such properties, we believe it is reasonable
to test for such common expectations.

To test a system, we first construct a workload. Our
workloads are not specifically crafted to expose vulnera-



## Workload ##
# Start cluster
# Insert new data
zk = client(hosts=server ips)
zk.set("/mykey", "newvalue")
pace.acknowledged = True
# Stop cluster

## Checker ##
# Start cluster
# Check for data
retry policy = retry(max tries = r, delay = d,
backoff = b)
zk = client(hosts=server ips, retry policy)
ret, stat = zk.get("/mykey")
if request succeeded:
..if pace.acknowledged and ret == None:
....return ’data loss new commit’
..if pace.acknowledged and ret != ’newvalue’:
....return ’corrupt’
..if not pace.acknowledged and ret == None:
....return ’data loss old commit’
else:
..return ’unavailable’
return ’correct’
# Stop cluster

Listing 1: Workload and Checker. Simplified workload and
checker for ZooKeeper.

bilities, but rather are very natural and simple. Our work-
loads insert new data or update existing data and record
the acknowledgment from the cluster. They are usually
about 30-40 LOC.

To check each crash state, we implement a checker.
The checker is conceptually simple; it starts the cluster
with the crash state produced by PACE and checks for cor-
rectness by reading the data updated by the workload. If
the data is lost, corrupted, or not retrievable, the checker
flags the crash state incorrect. Further, our checkers
invoke recovery tools mentioned in applications’ docu-
mentation if an undesired output is observed. If the prob-
lem is fixed after invoking the recovery tool, then it is not
reported as a vulnerability. Our checkers are about 100
LOC. Table 1 shows the configurations (that achieve the
strongest safety guarantees), workloads, and checkers for
all systems. Listing 1 shows the simplified pseudocode
of the workload and the checker for ZooKeeper.

4.2 Vulnerability Accounting
A system has a crash vulnerability if a crash exposes a
user-level guarantee violation. Counting such vulnerable
places in the code is simple for single-machine applica-
tions. In a distributed system, multiple copies of the same
code execute and so PACE needs to be careful in how it
counts unique vulnerabilities.

We count only unique combinations of states that ex-
pose a vulnerability. Consider a sequence S1 that creates
(C), appends (A), and renames (R) a file. Assume that
a node will not start if it crashes after C but before R.
Assume there are three nodes in an RSM system and two

crash after C but before R. In this case, the cluster can be-
come unusable in four ways (C-C, CA-CA, C-CA, CA-
C). We count all such instances as one vulnerability. If
the third node crashes within this sequence, it will also be
mapped onto the same vulnerability. If there is another
different sequence S2 that causes problems, a vulnerabil-
ity could be exposed in many different ways as one node
can crash within S1 and another within S2. We associate
all such combinations to two unique vulnerabilities, at-
tributing to the atomicity of S1 and S2.

PACE also associates each vulnerability with the appli-
cation source code line using the stack trace information
obtained during tracing. When many vulnerabilities map
to the same source line, PACE considers that a single vul-
nerability. When we are unable to find the exact source
lines for two different vulnerabilities, we count them as
one. We note that our way of counting vulnerabilities
results in a conservative estimate.

4.3 Example Protocols and Vulnerabilities
Figure 4 shows protocols and vulnerabilities in
ZooKeeper, etcd, Redis, and Kafka. Due to space con-
straints, we show protocols only for four systems; proto-
col diagrams for other systems are publicly available [2].

RSM systems where vulnerabilities are exposed when
APM relaxations are applied on a majority of nodes are
represented using a grid. Figure 4(a) and 4(b) show the
combinations of persistent states across two nodes in a
three node ZooKeeper and etcd cluster, respectively. Op-
erations that change persistent state are shown on the left
(for one node) and the top (for the other node). A box
(i,j) corresponds to a crash point where the first node
crashes at operation i and the second at j. At each such
crash point, PACE reorders other operations, or partially
persists operations or both. A grey box denotes that the
distributed execution did not reach that combination of
states. A white box means that after applying all APM
relaxations, PACE was unable to find a vulnerability. A
black box denotes that when a specific relaxation (shown
on the left) is applied, a vulnerability is exposed.

As shown in Figure 4(a), to maintain proposal infor-
mation, ZooKeeper appends epoch numbers to tempo-
rary files, and renames them. If the renames are not
atomic or reordered after a later write, the cluster be-
comes unavailable. If a log file creation and a subsequent
append of header metadata are not atomically persisted,
then the nodes fail to start. Similarly, the immediate
truncate after log creation has to be atomically persisted
for correct startup. Writes and appends during transac-
tions, if reordered, can also cause node startup failures.
ZooKeeper can lose data as it does not fsync the parent
directory when a log is created.

Figure 4(b) shows the protocol and vulnerabilities in
etcd. etcd creates a temporary write-ahead log (WAL),
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Figure 4: Protocols and Vulnerabilities. (a), (b), (c), and (d) show protocols and vulnerabilities in ZooKeeper, etcd, Redis, and Kafka,
respectively. States that are not vulnerable, that were not reached in the execution, and that are vulnerable are shown by white, grey, and black
boxes, respectively. The annotations show how a particular state becomes vulnerable. In Zookeeper, box (24, 24) is vulnerable because both nodes
crash after the final fdatasync but before the log creation is persisted. Atomicity vulnerabilities are shown with brackets enclosing the operations
that need to be persisted atomically. The arrows show the ordering dependencies in the application protocol; if not satisfied, vulnerabilities are
observed. Dotted, dashed, and solid arrows represent safe file flush, directory operation, and other ordering dependencies, respectively.

appends some metadata, and renames it to create the final
WAL. The WAL is appended, flushed, and then the client
is acknowledged. We find that etcd cluster becomes un-
available if crashes occur when the WAL is appended;
the nodes fail to start if the appends to the WAL are re-
ordered or not persisted atomically. Also, if the rename
of the WAL is reordered, a global data loss is observed.

Non-RSM systems where vulnerabilities are exposed
even when relaxations are applied on a single machine
are shown using trace pairs. As shown in Figure 4(c),
Redis uses an append-only file to store user data. The
master appends to the file and sends the update to slaves.
Slaves, on startup, rewrite and rename the append-only
file. When the master sends new data, the slaves ap-
pend it to their append-only file and sync it. After the
slaves respond, the client is acknowledged. Data loss
windows are seen if the rename of the append-only file is
not atomic or reordered after the final fdatasync. When
the append is not atomic on the master, a user-visible
silent corruption is observed. Moreover, the corrupted
data is propagated from the master to the slaves, over-

riding their correct data. The same append (which maps
to the same source line) on the slave results in a window
of silent corruption. The window closes eventually since
the slaves sync the data from the master on startup.

Figure 4(d) shows the update protocol of Kafka. Kafka
creates a log file in the topic directory to store messages.
When a message is added, the leader appends the mes-
sage and flushes the log. It then contacts the followers
which perform the same operation and respond. After ac-
knowledging the client, the replication offset (that tracks
which messages are replicated to other brokers) is ap-
pended to a temporary file, flushed, and renamed to the
replication-offset-checkpoint file. The log can be lost af-
ter a crash because its parent directory is not flushed after
the log creation. If the log is lost on the master, then the
data is globally lost since the master instructs the slaves
also to drop the messages in the log. Similarly, Kafka can
lose a message topic altogether since the parent directory
of the topic directory is not explicitly flushed.

We observe that some systems (e.g., Redis, Kafka) do
not effectively use redundancy as a source of recovery.
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Redis 1 1 1 1 1 1 1 3
ZooKeeper 1 1 1 1 1 1 1 4 1 6
LogCabin 1 1 1 1 1 2
etcd 1 1 1 1 1 2 3
RethinkDB
MongoDB-WT 1 1 1
MongoDB-R 1 1 1 1 1 3 3 5
iNexus 1 1 1 1 1 2 3
Kafka 1 2 3 3
Total 2 4 1 6 4 5 4 1 2 9 12 3 1 2 1 26

Table 2: Vulnerabilities - Types and Consequences.
The table shows the unique vulnerabilities categorized by file-system
requirements and consequences.

For instance, in these systems, a local problem (such as
a local corruption or data loss) which results due to a
relaxation on a single node, can easily become a global
vulnerability such as a user-visible silent corruption or
data loss. In such situations, these systems miss opportu-
nities to use other intact replicas to recover from the local
problem. Moreover, such local problems are propagated
to other intact replicas, overriding their correct data.

4.4 Patterns in File-system Requirements
Table 2 shows file-system requirements across systems.
We group the results into three patterns:
Inter-Syscall Atomicity. ZooKeeper and LogCabin re-
quire inter system call atomicity (multiple system calls
need to be atomically persisted). In both these systems,
when a new log file is initialized, the creat and the initial
append of the log header need to be atomically persisted.
If the log initialization is partially persisted, the cluster
becomes unavailable. Vulnerabilities due to inter system
call atomicity requirements can occur on all file systems
irrespective of how they persist operations.
Atomicity within System calls. We find that seven
applications require system calls to be atomically per-
sisted. Eleven unique vulnerabilities are observed when
system calls are not persisted atomically. Six out of
the eleven vulnerabilities are dependent on atomic re-
place by rename (destination link already exists), one on
atomic create by rename (destination link does not exist),
and four on atomic truncates or appends. Four applica-
tions require appends or truncates to be atomic. Redis,
ZooKeeper, and etcd can handle appended portions filled
with zeros but not garbage.

Ordering between System calls. Six applications ex-
pect system calls to be persisted in order. Kafka and
ZooKeeper suffer from data loss since they expect the
safe file flush property from the file system. To persist
a file’s directory entry, the parent directory has to be ex-
plicitly flushed to avoid such vulnerabilities. We found
that reordering directory operations can cause vulnerabil-
ities. We found that five applications depend on ordered
renames: Redis exhibits a data loss window, etcd perma-
nently loses data, ZooKeeper, MongoDB-R, and iNexus
fail to start. Four applications require other operations
(appends and writes) to be ordered for correct behavior.

4.5 Vulnerability Consequences
Table 2 shows the vulnerability consequences. We find
that all vulnerabilities have severe consequences like
silent corruption, data loss, or cluster unavailability. Re-
dis silently returns and propagates corrupted data from
the master to slaves even if slaves have correct older ver-
sion of data. Redis also has a silent corruption window
when reads are performed on slaves. While only one sys-
tem silently corrupts and propagates corrupted data, six
out of eight systems are affected by permanent data loss.
Depending on the crash state, previously committed data
can be lost when new data is inserted or the newly in-
serted data can be lost after acknowledgment. Redis ex-
hibits a data loss window that is exposed when reads are
performed on the slaves. As slaves continuously sync
data from the master, the window eventually closes.

Cluster unavailability occurs when nodes fail to
start due to corrupted application data or metadata.
ZooKeeper and etcd fail to start if CRC checksums mis-
match in user data. MongoDB-WT fails to start if the
turtle file is missing and MongoDB-R fails to start if the
sstable file is missing or there is a mismatch in the cur-
rent and manifest files. LogCabin and iNexus skip log
entries when checksums do not match but fail to start if
metadata is corrupted. LogCabin fails to start when an
unexpected segment metadata version is found. Simi-
larly, ZooKeeper fails to start on unexpected epoch val-
ues. While some of these scenarios can be fixed by expert
application users, the process is intricate and error prone.

We note that the vulnerabilities are specific to our sim-
ple workloads and all vulnerabilities reported by PACE

have harmful consequences. More complex workloads
and checkers that assert more subtle invariants are bound
to find more vulnerabilities.

4.6 Impact on Real File Systems
We configured PACE with APMs of real file systems. Ta-
ble 3 shows the vulnerabilities on each file system. We
observe that many vulnerabilities can occur on all exam-
ined file systems. Only two vulnerabilities are observed
in ext3-j (data-journaling) as all operations are persisted
in order. All vulnerabilities that occur on our default



ext2 ext3-w ext3-o ext4-o ext3-j btrfs
Redis 3 1 1
ZooKeeper 6 3 1 1 1 3
LogCabin 2 1 1 1 1 1
etcd 3 2
MongoDB-WT 1
MongoDB-R 5 2 2 2 3
iNexus 2 1 1 2
Kafka 3
Total 26 9 5 5 2 10

Table 3: Vulnerabilities on Real File Systems. The table
shows the number of vulnerabilities on commonly used file systems.

APM are also exposed on ext2. Applications are vul-
nerable even on Linux’s default file system (ext4 ordered
mode). Many of the vulnerabilities are exposed on btrfs
as it reorders directory operations. In summary, the vul-
nerabilities are exposed on many current file systems on
which distributed storage systems run today.

4.7 Confirmation of Problems Found
We reported 18 of the discovered vulnerabilities to ap-
plication developers. We confirmed that the reported
issues cause serious problems (such as data loss and
unavailability) to users of the system. Seven out of
the 18 reported issues were assigned to developers and
fixed [32–34, 56, 87, 88]. Another five issues have been
acknowledged or assigned to developers. Out of this
five, two in Kafka were already known [48]. Other is-
sues are still open and under consideration. We found
that distributed storage system developers, in general, are
responsive to such bug reports for two reasons. First,
we believe developers consider crashes very important
in distributed systems compared to single-machine ap-
plications. Second, the discovered vulnerabilities due to
crashes affect their users directly (for example, data loss
and cluster unavailability).

We found that users and random-crash testing have
also occasionally encountered the same vulnerabilities
that were systematically discovered by PACE. However,
PACE diagnoses the underlying root cause and provides
information of the problematic source code line, easing
the process of fixing these vulnerabilities.

4.8 Discussion
We first discuss the immediate implications of our find-
ings in building distributed storage systems atop file sys-
tems. Next, we discuss the difficulties in fixing some of
the discovered vulnerabilities.

4.8.1 Implications
We find that redundancy by replication is not the panacea
for constructing reliable storage systems. Although
replication can help with single node failures, correlated
crashes still remain a problem. We find that application
protocols, when driven to corner cases, can often over-
ride correct versions of data with corrupted data or older

versions without considering how the system reached
such a state. For example, Redis and Kafka can prop-
agate corrupted data and data loss to slaves, respectively.
Similarly, RSM systems override correct newer versions
of data on other nodes when a majority of nodes have lost
the data; a better recovery strategy could use the unaf-
fected replicas to fix the loss of acknowledged data even
if the data is lost on a majority of nodes. We believe
replication protocols and local storage protocols should
be designed in tandem to avoid such undesired behaviors.

System designers need to be careful about two prob-
lems when embracing layered software. First, the reli-
ability of the entire system depends on individual com-
ponents. MongoDB’s reliability varies depending on the
storage engine (WiredTiger or RocksDB). Second, sep-
arate well-tested components when integrated can bring
unexpected problems. In the version of MongoDB we
tested, we found that correct options are not passed from
upper layers to RocksDB, resulting in a data loss. Simi-
larly, iNexus uses a modified version of LevelDB which
does not flush writes to disk when transactions commit.
Applications need to clearly understand the guarantees
provided by components when using them.

We find that a few applications are overly cautious in
how they update file-system state. LogCabin flushes files
and directories after every operation. Though this avoids
many reordering vulnerabilities, it does not fix atom-
icity vulnerabilities. Issuing fsync at various places
does not completely avoid reliability problems. Also,
the implication of too much caution is clear: low perfor-
mance. While this approach is reasonable for configura-
tion stores, key-value stores need a better way to achieve
the same effect without compromising performance.

All modern distributed storage system run on top of a
variety of file systems that provide different crash guar-
antees. We advocate that distributed storage systems
should understand and document on which file systems
their protocols work correctly to help practitioners make
conscious deployment decisions.

4.8.2 Difficulties in Fixing
Now we discuss the difficulties in fixing the discov-
ered vulnerabilities. The effort to fix the vulnerabili-
ties varies significantly. While some of them are simple
implementation-level fixes, many of them are fundamen-
tal problems that require rethinking how distributed crash
recovery protocols are designed.

Some vulnerabilities (such as those due to non-atomic
renames) are automatically masked in modern file sys-
tems; these possess a practical concern only when the
applications are run on file systems that do not provide
such guarantees (e.g., ext2). While only some vulnera-
bilities can be easily fixed, many vulnerabilities are fun-
damentally hard to fix and they fall into three categories.



First, some vulnerabilities cannot be fixed by current
file system interfaces or straightforward changes in appli-
cation local update protocols. For example, consider the
inter-syscall atomicity vulnerabilities and the non-atomic
multi-block appends and truncates. These vulnerabilities
are exposed on all current file systems since POSIX does
not provide a way to atomically persist multiple system
calls or a write that spans multiple blocks. While a differ-
ent interface that allows multiple system calls to be atom-
ically persisted can help, such an interface is far from
reality in current commodity file systems.

Second, many reordering vulnerabilities can be fixed
by carefully issuing fsync at correct places in the local
update protocol. However, applications may not be will-
ing to do so, given the clear performance impact in the
common case update protocol code.

Third, sometimes the programming environment may
constrain applications from utilizing some file system in-
terfaces, leading to vulnerabilities. For example, con-
sider the safe file flush and directory operation reordering
vulnerabilities in ZooKeeper and Kafka. These vulnera-
bilities arise because these systems are written in Java in
which fsync cannot be readily issued on directories.

In all the above cases, simply fixing the local update
protocols is not a feasible solution. Fixing these funda-
mental problems requires carefully designing local and
global recovery protocols that interact correctly to fix the
problem using other intact replicas.

5 Related Work
Recent work has demonstrated that file-system behaviors
vary widely [4, 14, 70–73]. We derive our APM specifi-
cations from our previous work [70]. Our previous work
also developed Alice to uncover single-machine crash
vulnerabilities. Tools like Alice cannot be directly ap-
plied to distributed systems as they do not track cross
node dependencies. If applied, such tools may report
spurious vulnerabilities. Although such tools can be ap-
plied in stand-alone mode like in ZooKeeper [99], many
code paths would not be exercised and thus miss impor-
tant vulnerabilities. Zheng et al. [98] find crash vulner-
abilities in databases. Unlike our work, Zheng et al. do
not systematically explore all states that can occur in an
execution. They find vulnerabilities that can commonly
occur: they do not model file-system behavior closely
and therefore cannot explore all corner cases.

PACE is complementary to distributed model check-
ers [29, 40, 42, 54, 95, 96]: bugs due to file-system be-
haviors discovered by PACE cannot be discovered by ex-
isting model checkers and bugs due to network message
re-orderings cannot be discovered by PACE. Distributed
model checkers use dynamic partial-order based tech-
niques to reduce state space explosion. SAMC [54] can
also induce crashes and reboots in addition to reordering

messages. To reduce state space, SAMC uses seman-
tic information which requires testers to write protocol-
specific rules for a target system. PACE uses only high-
level protocol-awareness to prune the state space and
does not require any code as input. Jepsen [50] is a tool
that tests distributed systems under faulty networks and
partial failures. Similar to distributed model checkers,
such tools are complementary to PACE.

Previous tools focus solely on either single-node file
system behavior or distributed consensus and thus cannot
understand the interaction of distributed recovery proto-
col and a local-storage protocol. To our knowledge, our
work is the first to consider file-system behaviors in the
context of distributed storage systems. It is difficult for
other distributed model checkers to reproduce the vulner-
abilities found by PACE because they run the system on
top of already implemented storage stacks. PACE models
the file system used by the distributed system and thus
can check how a distributed storage system will work on
any current or future file system.

6 Conclusion
Modern distributed storage systems suffer from corre-
lated crash vulnerabilities and subtleties in local file-
system behavior influence the correctness of distributed
update protocols. We present PACE a tool that can
effectively search for correlated crash vulnerabilities
by pruning the search space. We study eight popu-
lar distributed storage systems using PACE and find 26
unique vulnerabilities. As modern distributed storage
systems are becoming the primary choice for storing
and managing critical user data, tools such as PACE

are increasingly vital to uncover reliability problems.
Source code of PACE, workloads, checkers, and de-
tails of the discovered vulnerabilities are publicly avail-
able at http://research.cs.wisc.edu/adsl/
Software/pace/.
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