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Abstract
We present the first comprehensive study of application-
level crash-consistency protocols built atop modern file
systems. We find that applications use complex update
protocols to persist state, and that the correctness of
these protocols is highly dependent on subtle behaviors
of the underlying file system, which we term persistence
properties. We develop a tool named BOB that empir-
ically tests persistence properties, and use it to demon-
strate that these properties vary widely among six pop-
ular Linux file systems. We build a framework named
ALICE that analyzes application update protocols and
finds crash vulnerabilities, i.e., update protocol code that
requires specific persistence properties to hold for cor-
rectness. Using ALICE, we analyze eleven widely-used
systems (including databases, key-value stores, version
control systems, distributed systems, and virtualization
software) and find a total of 60 vulnerabilities, many of
which lead to severe consequences. We also show that
ALICE can be used to evaluate the effect of new file-
system designs on application-level consistency.

1 Introduction
Crash recovery is a fundamental problem in systems
research [8, 21, 34, 38], particularly in database man-
agement systems, key-value stores, and file systems.
Crash recovery is hard to get right; as evidence, con-
sider the ten-year gap between the release of commercial
database products (e.g., System R [7, 8] and DB2 [34])
and the development of a working crash recovery algo-
rithm (ARIES [33]). Even after ARIES was invented, an-
other five years passed before the algorithm was proven
correct [24, 29].

The file-systems community has developed a standard
set of techniques to provide file-system metadata consis-
tency in the face of crashes [4]: logging [5, 9, 21, 37, 45,
51], copy-on-write [22,30,38,44], soft updates [18], and
other similar approaches [10, 16]. While bugs remain in
the file systems that implement these methods [28], the
core techniques are heavily tested and well understood.

Many important applications, including databases
such as SQLite [43] and key-value stores such as Lev-
elDB [20], are currently implemented on top of these
file systems instead of directly on raw disks. Such data-
management applications must also be crash consistent,

but achieving this goal atop modern file systems is chal-
lenging for two fundamental reasons.

The first challenge is that the exact guarantees pro-
vided by file systems are unclear and underspecified.
Applications communicate with file systems through the
POSIX system-call interface [48], and ideally, a well-
written application using this interface would be crash-
consistent on any file system that implements POSIX.
Unfortunately, while the POSIX standard specifies the
effect of a system call in memory, specifications of how
disk state is mutated in the event of a crash are widely
misunderstood and debated [1]. As a result, each file sys-
tem persists application data slightly differently, leaving
developers guessing.

To add to this complexity, most file systems provide
a multitude of configuration options that subtly affect
their behavior; for example, Linux ext3 provides numer-
ous journaling modes, each with different performance
and robustness properties [51]. While these configura-
tions are useful, they complicate reasoning about exact
file system behavior in the presence of crashes.

The second challenge is that building a high-
performance application-level crash-consistency proto-
col is not straightforward. Maintaining application con-
sistency would be relatively simple (though not trivial)
if all state were mutated synchronously. However, such
an approach is prohibitively slow, and thus most appli-
cations implement complex update protocols to remain
crash-consistent while still achieving high performance.
Similar to early file system and database schemes, it is
difficult to ensure that applications recover correctly af-
ter a crash [41, 47]. The protocols must handle a wide
range of corner cases, which are executed rarely, rela-
tively untested, and (perhaps unsurprisingly) error-prone.

In this paper, we address these two challenges directly,
by answering two important questions. The first question
is: what are the behaviors exhibited by modern file sys-
tems that are relevant to building crash-consistent appli-
cations? We label these behaviors persistence properties
(§2). They break down into two global categories: the
atomicity of operations (e.g., does the file system ensure
that rename() is atomic [32]?), and the ordering of oper-
ations (e.g., does the file system ensure that file creations
are persisted in the same order they were issued?).

To analyze file system persistence properties, we de-
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Figure 1: Git Crash Vulnerability. The figure shows part of
the Git update protocol. The arrows represent ordering dependencies:
if the appends are not persisted before the rename, any further commits
to the repository fail. We find that, whether the protocol is vulnerable
or not varies even between configurations of the same file system.

velop a simple tool, known as the Block Order Breaker
(BOB). BOB collects block-level traces underneath a file
system and re-orders them to explore possible on-disk
crash states that may arise. With this simple approach,
BOB can find which persistence properties do not hold
for a given system. We use BOB to study six Linux file
systems (ext2, ext3, ext4, reiserfs, btrfs, and xfs) in var-
ious configurations. We find that persistence properties
vary widely among the tested file systems. For example,
appends to file A are persisted before a later rename of
file B in the ordered journaling mode of ext3, but not in
the same mode of ext4, unless a special option is enabled.

The second question is: do modern applications im-
plement crash consistency protocols correctly? An-
swering this question requires understanding update pro-
tocols, no easy task since update protocols are com-
plex [47] and spread across multiple files in the source
code. To analyze applications, we develop ALICE, a
novel framework that enables us to systematically study
application-level crash consistency (§3). ALICE takes ad-
vantage of the fact that, no matter how complex the ap-
plication source code, the update protocol boils down to
a sequence of file-system related system calls. By an-
alyzing permutations of the system-call trace of work-
loads, ALICE produces protocol diagrams: rich annotated
graphs of update protocols that abstract away low-level
details to clearly present the underlying logic. ALICE

determines the exact persistence properties assumed by
applications as well as flaws in their design.

Figure 1 shows an example of ALICE in action. The
figure shows a part of the update protocol of Git [26].
ALICE detected that the appends need to be persisted be-
fore the rename; if not, any future commits to the repos-
itory fail. This behavior varies widely among file sys-
tems: a number of file-system features such as delayed
allocation and journaling mode determine whether file
systems exhibit this behavior. Some common configura-
tions like ext3 ordered mode persist these operations in
order, providing a false sense of security to the developer.

We use ALICE to study and analyze the up-
date protocols of eleven important applications: Lev-
elDB [20], GDBM [19], LMDB [46], SQLite [43],
PostgreSQL [49], HSQLDB [23], Git [26], Mercu-
rial [31]), HDFS [40], ZooKeeper [3], and VMWare

Player [52]. These applications represent software from
different domains and at varying levels of maturity. The
study focuses on file-system behavior that affects users,
rather than on strictly verifying application correctness.
We hence consider typical usage scenarios, sometimes
checking for additional consistency guarantees beyond
those promised in the application documentation. Our
study takes a pessimistic view of file-system behavior;
for example, we even consider the case where renames
are not atomic on a system crash.

Overall, we find that application-level consistency in
these applications is highly sensitive to the specific per-
sistence properties of the underlying file system. In gen-
eral, if application correctness depends on a specific file-
system persistence property, we say the application con-
tains a crash vulnerability; running the application on a
different file system could result in incorrect behavior.
We find a total of 60 vulnerabilities across the applica-
tions we studied; several vulnerabilities have severe con-
sequences such as data loss or application unavailability.
Using ALICE, we also show that many of these vulner-
abilities (roughly half) manifest on current file systems
such as Linux ext3, ext4, and btrfs.

We find that many applications implicitly expect or-
dering among system calls (e.g., that writes, even to dif-
ferent files, are persisted in order); when such ordering
is not maintained, 7 of the 11 tested applications have
trouble properly recovering from a crash. We also find
that 10 of the 11 applications expect atomicity of file-
system updates. In some cases, such a requirement is
reasonable (e.g., a single 512-byte write or file rename
operation are guaranteed to be atomic by many current
file systems when running on a hard-disk drive); in other
situations (e.g., with file appends), it is less so. We also
note that some of these atomicity assumptions are not fu-
ture proof; for example, new storage technology may be
atomic only at a smaller granularity than 512-bytes (e.g.,
eight-byte PCM [12]). Finally, for 7 of the 11 applica-
tions, durability guarantees users likely expect are not
met, often due to directory operations not being flushed.

ALICE also enables us to determine whether new file-
system designs will help or harm application protocols.
We use ALICE to show the benefits of an ext3 variant
we propose (ext3-fast), which retains much of the pos-
itive ordering and atomicity properties of ext3 in data
journaling mode, without the high cost. Such verifica-
tion would have been useful in the past; when delayed
allocation was introduced in Linux ext4, it broke several
applications, resulting in bug reports, extensive mailing-
list discussions, widespread data loss, and finally, file-
system changes [14]. With ALICE, testing the impact of
changing persistence properties can become part of the
file-system design process.
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Figure 2: Crash States. The figure shows the initial, final, and
some of the intermediate crash states possible for the workload de-
scribed in Section 2.1 . X represents garbage data in the files. Interme-
diate states #A and #B represent different kinds of atomicity violations,
while intermediate state #C represents an ordering violation.

2 Persistence Properties
In this section, we study the persistence properties of
modern file systems. These properties determine which
possible post-crash file system states are possible for a
given file system; as we will see, different file systems
provide subtly different guarantees, making the chal-
lenge of building correct application protocols atop such
systems more vexing.

We begin with an example, and then describe our
methodology: to explore possible on-disk states by re-
ordering the I/O block stream, and then examine pos-
sible resulting states. Our testing is not complete, but
finds persistence properties that do not hold for a file-
system implementation. We then discuss our findings for
six widely-used Linux file systems: ext2 [6], ext3 [51],
ext4 [50], btrfs [30], xfs [45], and reiserfs [37].

Application-level crash consistency depends strongly
upon these persistence properties, yet there are currently
no standards. We believe that defining and studying per-
sistence properties is the first step towards standardizing
them across file systems.

2.1 An Example
All application update protocols boil down to a sequence
of I/O-related system calls which modify on-disk state.
Two broad properties of system calls affect how they are
persisted. The first is atomicity: does the update from the
call happen all at once, or are there possible intermediate
states that might arise due to an untimely crash? The
second is ordering: can this system call be persisted after
a later system call? We now explain these properties with
an example.
We consider the following pseudo-code snippet:

write(f1, "pp");
write(f2, "qq");

In this example, the application first appends the string
pp to file descriptor f1 and then appends the string qq to
file descriptor f2. Note that we will sometimes refer to
such a write() as an append() for simplicity.

Figure 2 shows a few possible crash states that can
result. If the append is not atomic, for example, it would
be possible for the size of the file to be updated without
the new data reflected to disk; in this case, the files could
contain garbage, as shown in State A in the diagram. We

refer to this as size-atomicity. A lack of atomicity could
also be realized with only part of a write reaching disk, as
shown in State B. We refer to this as content-atomicity.

If the file system persists the calls out of order, another
outcome is possible (State C). In this case, the second
write reaches the disk first, and as a result only the second
file is updated. Various combinations of these states are
also possible.

As we will see when we study application update pro-
tocols, modern applications expect different atomicity
and ordering properties from underlying file systems. We
now study such properties in detail.

2.2 Study and Results
We study the persistence properties of six Linux file sys-
tems: ext2, ext3, ext4, btrfs, xfs, and reiserfs. A large
number of applications have been written targeting these
file systems. Many of these file systems also provide
multiple configurations that make different trade-offs be-
tween performance and consistency: for instance, the
data journaling mode of ext3 provides the highest level of
consistency, but often results in poor performance [35].
Between file systems and their various configurations, it
is challenging to know or reason about which persistence
properties are provided. Therefore, we examine different
configurations of the file systems we study (a total of 16).

To study persistence properties, we built a tool, known
as the Block Order Breaker (BOB), to empirically find
cases where various persistence properties do not hold
for a given file system. BOB first runs a simple user-
supplied workload designed to stress the persistence
property tested (e.g., a number of writes of a specific size
to test overwrite atomicity). BOB collects the block I/O
generated by the workload, and then re-orders the col-
lected blocks, selectively writing some of them to disk to
generate a new legal disk state (disk barriers are obeyed).
In this manner, BOB generates a number of unique disk
images corresponding to possible on-disk states after a
system crash. BOB then runs file-system recovery on
each resulting disk image, and checks whether various
persistence properties hold (e.g., if writes were atomic).
If BOB finds even a single disk image where the checker
fails, then we know that the property does not hold on
the file system. Proving the converse (that a property
holds in all situations) is not possible using BOB; cur-
rently, only simple block re-orderings and all prefixes of
the block trace are tested.

Note that different system calls (e.g., writev(),
write()) lead to the same file-system output. We group
such calls together into a generic file-system update we
term an operation. We have found that grouping all op-
erations into three major categories is sufficient for our
purposes here: file overwrite, file append, and directory
operations (including rename, link, unlink, mkdir, etc.).
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Atomicity
Single sector overwrite
Single sector append × × × ×
Single block overwrite ×××× ××× ×× ×××
Single block append ××× × ××
Multi-block append/writes ××××××××××××××××
Multi-block prefix append ××× × ××
Directory op ×× ×
Ordering
Overwrite→ Any op × ×× ××× ×××××
[Append, rename]→ Any op × × × ××
O TRUNC Append→ Any op × × × ××
Append→ Append (same file)× × × ××
Append→ Any op × × ×× ×× ××
Dir op→ Any op × × ×

Table 1: Persistence Properties. The table shows atomic-
ity and ordering persistence properties that we empirically determined
for different configurations of file systems. X→ Y indicates that X is
persisted before Y. [X,Y] → Z indicates that Y follows X in program
order, and both become durable before Z. A× indicates that we have a
reproducible test case where the property fails in that file system.

Table 1 lists the results of our study. The table shows,
for each file system (and specific configuration) whether
a particular persistence property has been found to not
hold; such cases are marked with an ×.

The size and alignment of an overwrite or append af-
fects its atomicity. Hence, we show results for single sec-
tor, single block, and multi-block overwrite and append
operations. For ordering, we show whether given prop-
erties hold assuming different orderings of overwrite, ap-
pend, and directory operations; the append operation has
some interesting special cases relating to delayed alloca-
tion (as found in Linux ext4) – we show these separately.

2.2.1 Atomicity
We observe that all tested file systems seemingly pro-
vide atomic single-sector overwrites: in some cases (e.g.,
ext3-ordered), this property arises because the underly-
ing disk provides atomic sector writes. Note that if such
file systems are run on top of new technologies (such as
PCM) that provide only byte-level atomicity [12], single-
sector overwrites will not be atomic.

Providing atomic appends requires the update of two
locations (file inode, data block) atomically. Doing so re-
quires file-system machinery, and is not provided by ext2
or writeback configurations of ext3, ext4, and reiserfs.

Overwriting an entire block atomically requires data
journaling or copy-on-write techniques; atomically ap-
pending an entire block can be done using ordered mode
journaling, since the file system only needs to ensure the

entire block is persisted before adding a pointer to it.
Current file systems do not provide atomic multi-block

appends; appends can be broken down into multiple op-
erations. However, most file systems seemingly guaran-
tee that some prefix of the data written (e.g., the first 10
blocks of a larger append) will be appended atomically.

Directory operations such as rename() and link()

are seemingly atomic on all file systems that use tech-
niques like journaling or copy-on-write for consistency.

2.2.2 Ordering
We observe that ext3, ext4, and reiserfs in data journal-
ing mode, and ext2 in sync mode, persist all tested op-
erations in order. Note that these modes often result in
poor performance on many workloads [35].

The append operation has interesting special cases. On
file systems with the delayed allocation feature, it may
be persisted after other operations. A special exception
to this rule is when a file is appended, and then renamed.
Since this idiom is commonly used to atomically update
files [14], many file systems recognize it and allocate
blocks immediately. A similar special case is append-
ing to files that have been opened with O TRUNC. Even
with delayed allocation, successive appends to the same
file are persisted in order. Linux ext2 and btrfs freely re-
order directory operations (especially operations on dif-
ferent directories [11]) to increase performance.

2.3 Summary
From Table 1, we observe that persistence properties
vary widely among file systems, and even among differ-
ent configurations of the same file system. The order of
persistence of system calls depends upon small details
like whether the calls are to the same file or whether the
file was renamed. From the viewpoint of an application
developer, it is risky to assume that any particular prop-
erty will be supported by all file systems.

3 The Application-Level Intelligent
Crash Explorer (ALICE)

We have now seen that file systems provide different per-
sistence properties. However, some important questions
remain: How do current applications update their on-disk
structures? What do they assume about the underlying
file systems? Do such update protocols have vulnerabil-
ities? To address these questions, we developed ALICE

(Application-Level Intelligent Crash Explorer). ALICE

constructs different on-disk file states that may result due
to a crash, and then verifies application correctness on
each created state.

Unlike other approaches [53, 54] that simply test an
application atop a given storage stack, ALICE finds the
generic persistence properties required for application
correctness, without being restricted to only a specified
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Figure 3: ALICE Overview. The figure shows how ALICE
converts user inputs into crash states and finally into crash vulnerabil-
ities. Black boxes are user inputs. Grey boxes are optional inputs.

file system. ALICE associates discovered vulnerabili-
ties directly with source lines, and targets specific states
that are prone to reveal crash vulnerabilities in different
source lines. ALICE achieves this by constructing file
states directly from the system-call trace of an applica-
tion workload. The states to be explored and verified can
be described purely in terms of system calls: the actual
storage stack is not involved. ALICE can also be used to
abstractly test the safety of new file systems.

We first describe how ALICE is used (§3.1). We then
describe how ALICE calculates states possible during
a system crash, using an Abstract Persistence Model
(APM) (§3.2). Next, we describe how these states are
selectively explored so as to discover application require-
ments in terms of persistence properties (§3.3), and how
discovered vulnerabilities are reported associated with
source code lines (§3.4). Finally, we describe our im-
plementation (§3.5) and its limitations (§3.6).

3.1 Usage
ALICE is simple to use. The user first supplies ALICE

with an initial snapshot of the files used by the applica-
tion (typically an entire directory), and a workload script
that exercises the application (such as performing a trans-
action). The user also supplies a checker script corre-
sponding to the workload that verifies whether invariants
of the workload are maintained (such as atomicity of the
transaction). ALICE runs the checker atop different crash
states, i.e., the state of files after rebooting from a system
crash that can occur during the workload. ALICE then
produces a logical representation of the update protocol
executed during the workload, vulnerabilities in the pro-
tocol and their associated source lines, and persistence
properties required for correctness.

# Workload

# Opening database
db = gdbm.open(’mydb’)

# Inserting key-value
db[’x’] = ’foo’
db.sync()

print ’Done’

# Checker

db = gdbm.open(’mydb’)
c = len(db.keys())
if alice.printed(’Done’):
..assert c == 1
else:
..assert c == 0 or c == 1
if c == 1:
..assert db[’x’] == ’foo’

Listing 1: Workload and Checker. Simplified form of python
workload and checker for GDBM (a key-value store).

The exact crash states possible for a workload varies
with the file system. For example, depending on the file
system, appending to a file can result in the file con-
taining either a prefix of the data persisted, with ran-
dom data intermixed with file data, or various combi-
nations thereof. ALICE uses file-system Abstract Per-
sistence Models (APMs) to define the exact crash states
possible in a given file system. By default, ALICE uses an
APM with few restrictions on the possible crash states, so
as to find generic persistence properties required for ap-
plication correctness. However, ALICE can be restricted
to find vulnerabilities occurring only on a specific file
system, by supplying the APM of that file system.

Listing 1 shows example workload and checker scripts
for GDBM, a key-value store, written in Python. We dis-
cuss how APMs are specified in the next subsection.

3.2 Crash States and APMs
Figure 3 shows an overview of the steps ALICE follows
to find crash vulnerabilities. The user-supplied workload
is first run, and a system-call trace obtained; the trace
represents an execution of the application’s update pro-
tocol. The trace is converted into a sequence of logical
operations by ALICE. The sequence of logical opera-
tions, along with an APM, is used to calculate the dif-
ferent crash states that are possible from the initial state.
These steps are now explained in detail.

3.2.1 Logical Operations
ALICE first converts the trace of system calls in the ap-
plication workload to logical operations. Logical opera-
tions abstract away details such as current read and write
offsets, file descriptors, and transform a large set of sys-
tem calls and other I/O producing behavior into a small
set of file-system operations. For example, write(),
pwrite(), writev(), pwritev(), and mmap()-writes
are all translated into overwrite or append logical op-
erations. Logical operations also associate a conceptual
inode to each file or directory involved.

3.2.2 Abstract Persistence Models
An APM specifies all constraints on the atomicity and or-
dering of logical operations for a given file system, thus
defining which crash states are possible.

APMs represent crash states as consisting of two log-
ical entities: file inodes containing data and a file size,
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Logical Operation Micro-operations
overwrite N× write block(data)
append change file size

write block(random)
write block(data)
{N×

truncate change file size
write block(random)
write block(zeroes)
{N×

link create dir entry
unlink delete dir entry + truncate if last link
rename delete dir entry(dest) + truncate if last link

create dir entry(dest)
delete dir entry(source)

print stdout
(a) Atomicity Constraints.

Description Constraint
sync-ops [any-opi(A) ... fsyncj (A)]→any-opk ∀ i < j < k

stdout stdouti()→any-opj ∀ i < j
(b) Ordering Constraints.

Table 2: Default APM Constraints. (a) shows atomicity
constraints; N indicates a logical operation being divided into many
micro-ops. (b) shows ordering constraints. Xi is the ith operation, and
any-op(A) is an operation on the file or directory A.

and directories containing directory entries. Each logical
operation operates on one or more of these entities. An
infinite number of instances of each logical entity exist,
and they are never allocated or de-allocated, but rather
simply changed. Additionally, each crash state also in-
cludes any output printed to the terminal during the time
of the crash as a separate entity.

To capture intermediate crash states, APMs break log-
ical operations into micro-operations, i.e., the smallest
atomic modification that can be performed upon each
logical entity. There are five micro-ops:

• write block: A write of size block to a file. Two spe-
cial arguments to write block are zeroes and random:
zeroes indicates the file system initializing a newly
allocated block to zero; random indicates an unini-
tialized block. Writes beyond the end of a file cause
data to be stored without changing file size.

• change file size: Changes the size of a file inode.
• create dir entry: Creates a directory entry in a direc-

tory, and associates a file inode or directory with it.
• delete dir entry: Deletes a directory entry.
• stdout: Adds messages to the terminal output.

The APM specifies atomicity constraints by defining
how logical operations are translated into micro-ops. The
APM specifies ordering constraints by defining which
micro-ops can reach the disk before other micro-ops.

In most cases, we utilize a default APM to find the
greatest number of vulnerabilities in application update
protocols. The atomicity constraints followed by this de-
fault file system are shown in Table 2(a), which specifi-
cally shows how each logical operation is broken down
into micro-ops. The ordering constraints imposed by the
default APM are quite simple, as seen in Table 2(b): all
micro-ops followed by a sync on a file A are ordered after

open(path="/x2VC") = 10
Micro-ops: None
Ordered after: None

pwrite(fd=10, offset=0, size=1024)
Micro-ops: #1 write block(inode=8, offset=0, size=512)
Micro-ops: #2 write block(inode=8, offset=512, size=512)
Ordered after: None

fsync(10)
Micro-ops: None
Ordered after: None

pwrite(fd=10, offset=1024, size=1024)
Micro-ops: #3 write block(inode=8, offset=1024, size=512)
Micro-ops: #4 write block(inode=8, offset=1536, size=512)
Ordered after: #1, #2

link(oldpath="/x2VC", newpath="/file")
Micro-ops: #5 create dir entry(dir=2, entry=‘file’, inode=8)
Ordered after: #1, #2

write(fd=1, data="Writes recorded", size=15)
Micro-ops: #6 stdout(”Writes recorded”)
Ordered after: #1, #2

Listing 2: Annotated Update Protocol Example. Micro-
operations generated for each system call are shown along with their
dependencies. The inode number of x2VC is 8, and for the root
directory is 2. Some details of listed system calls have been omitted.

writes to A that precede the sync. Similar ordering also
applies to stdout, and additionally, all operations follow-
ing an stdout must be ordered after it.

ALICE can also model the behavior of real file systems
when configured with other APMs. As an example, for
the ext3 file system under the data=journal mode, the
ordering constraint is simply that each micro-op depends
on all previous micro-ops. Atomicity constraints for ext3
are mostly simple: all operations are atomic, except file
writes and truncates, which are split at block-granularity.
Atomic renames are imposed by a circular ordering de-
pendency between the micro-ops of each rename.

3.2.3 Constructing crash states.
As explained, using the APM, ALICE can translate the
system-call trace into micro-ops and calculate ordering
dependencies amongst them. Listing 2 shows an example
system-call trace, and the resulting micro-ops and order-
ing constraints. ALICE also represents the initial snapshot
of files used by the application as logical entities.

ALICE then selects different sets of the translated
micro-ops that obey the ordering constraints. A new
crash state is constructed by sequentially applying the
micro-ops in a selected set to the initial state (represented
as logical entities). For each crash state, ALICE then con-
verts the logical entities back into actual files, and sup-
plies them to the checker. The user-supplied checker thus
verifies the crash state.

3.3 Finding Application Requirements
By default, ALICE targets specific crash states that con-
cern the ordering and atomicity of each individual system
call. The explored states thus relate to basic persistence
properties like those discussed in Section 2, making it
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straightforward to determine application requirements.
We now briefly describe the crash states explored.

Atomicity across System Calls. The application up-
date protocol may require multiple system calls to be
persisted together atomically. This property is easy to
check: if the protocol has N system calls, ALICE con-
structs one crash state for each prefix (i.e., the first X
system calls, ∀ 1 < X < N ) applied. In the sequence
of crash states generated in this manner, the first crash
state to have an application invariant violated indicates
the start of an atomic group. The invariant will hold
once again in crash states where all the system calls in
the atomic group are applied. If ALICE determines that a
system call X is part of an atomic group, it does not test
whether the protocol is vulnerable to X being persisted
out of order, or being partially persisted.

System-Call Atomicity. The protocol may require a
single system call to be persisted atomically. ALICE tests
this for each system call by applying all previous sys-
tem calls to the crash state, and then generating crash
states corresponding to different intermediate states of
the system call and checking if application invariants are
violated. The intermediate states for file-system oper-
ations depend upon the APM, as shown (for example)
in Table 2. Some interesting cases include how ALICE
handles appends and how it explores the atomicity of
writes. For appends, we introduce intermediate states
where blocks are filled with random data; this models
the update of the size of a file reaching disk before the
data has been written. We split overwrites and appends
in two ways: into block-sized micro-operations, and into
three parts regardless of size. Though not exhaustive, we
have found our exploration of append and write atomic-
ity useful in finding application vulnerabilities.

Ordering Dependency among System Calls. The
protocol requires system call A to be persisted before B
if a crash state with B applied (and not A) violates appli-
cation invariants. ALICE tests this for each pair of system
calls in the update protocol by applying every system call
from the beginning of the protocol until B except for A.

3.4 Static Vulnerabilities
ALICE must be careful in how it associates problems
found in a system-call trace with source code. For exam-
ple, consider an application issuing ten writes in a loop.
The update protocol would then contain ten write()

system calls. If each write is required to be atomic for
application correctness, ALICE detects that each system
call is involved in a vulnerability; we term these as dy-
namic vulnerabilities. However, the cause of all these
vulnerabilities is a single source line. ALICE uses stack
trace information to correlate all 10 system calls to the
line, and reports it as a single static vulnerability. In the
rest of this paper, we only discuss static vulnerabilities.

3.5 Implementation
ALICE consists of around 4000 lines of Python code, and
also traces memory-mapped writes in addition to system
calls. It employs a number of optimizations.

First, ALICE caches crash states, and constructs a new
crash state by incrementally applying micro-operations
onto a cached crash state. We also found that the time
required to check a crash state was much higher than
the time required to incrementally construct a crash state.
Hence, ALICE constructs crash states sequentially, but in-
vokes checkers concurrently in multiple threads.

Different micro-op sequences can lead to the same
crash state. For example, different micro-op sequences
may write to different parts of a file, but if the file is un-
linked at the end of sequence, the resulting disk state is
the same. Therefore, ALICE hashes crash states and only
checks the crash state if it is new.

We found that many applications write to debug logs
and other files that do not affect application invariants.
ALICE filters out system calls involved with these files.

3.6 Limitations
ALICE is not complete, in that there may be vulnerabil-
ities that are not detected by ALICE. It also requires the
user to write application workloads and checkers; we be-
lieve workload automation is orthogonal to the goal of
ALICE, and various model-checking techniques can be
used to augment ALICE. For workloads that use multiple
threads to interact with the file system, ALICE serializes
system calls in the order they were issued; in most cases,
this does not affect vulnerabilities as the application uses
some form of locking to synchronize between threads.
ALICE currently does not handle file attributes; it would
be straight-forward to extend ALICE to do so.

4 Application Vulnerabilities
We study 11 widely used applications to find whether
file-system behavior significantly affects application
users, which file-system behaviors are thus important,
and whether testing using ALICE is worthwhile in gen-
eral. One of ALICE’s unique advantages, of being able
to find targeted vulnerabilities under an abstract file sys-
tem and reporting them in terms of a persistence prop-
erty violated, is thus integral to the study. The ap-
plications each represent different domains, and range
in maturity from a few years-old to decades-old. We
study three key-value stores (LevelDB [20], GDBM [19],
LMDB [46]), three relational databases (SQLite [43],
PostgreSQL [49], HSQLDB [23]), two version control
systems (Git [26], Mercurial [31]), two distributed sys-
tems (HDFS [40], ZooKeeper [3]), and a virtualization
software (VMWare Player [52]). We study two versions
of LevelDB (1.10, 1.15), since they vary considerably in
their update-protocol implementation.
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Aiming towards the stated goal of the study, we try to
consider typical user expectations and deployment sce-
narios for applications, rather than only the guarantees
listed in their documentation. Indeed, for some applica-
tions (Git, Mercurial), we could not find any documented
guarantees. We also consider file-system behaviors that
may not be common now, but may become prevalent in
the future (especially with new classes of I/O devices).
Moreover, the number of vulnerabilities we report (in
each application) only relates to the number of source
code lines depending on file-system behavior. Note that,
due to these reasons, the study is not suitable for com-
paring the correctness between different applications, or
towards strictly verifying application correctness.

We first describe the workloads and checkers used
in detecting vulnerabilities (§4.1). We then present an
overview of the protocols and vulnerabilities found in
different applications (§4.2). We discuss the importance
of the discovered vulnerabilities (§4.3), interesting pat-
terns observable among the vulnerabilities (§4.4), and
whether vulnerabilities are exposed on current file sys-
tems (§4.5). We also evaluate whether ALICE can vali-
date new file-system designs (§4.6).

4.1 Workloads and Checkers
Most applications have configuration options that change
the update protocol or application crash guarantees. Our
workloads test a total of 34 such configuration options
across the 11 applications. Our checkers are conceptu-
ally simple: they do read operations to verify workload
invariants for that particular configuration, and then try
writes to the datastore. However, some applications have
complex invariants, and recovery procedures that they
expect users to carry out (such as removing a leftover
lock file). Our checkers are hence complex (e.g., about
500 LOC for Git), invoking all recovery procedures we
are aware of that are expected of normal users.

We now discuss the workloads and checkers for
each application class. Where applicable, we also
present the guarantees we believe each application makes
to users, information garnered from documentation,
mailing-list discussions, interaction with developers, and
other relevant sources.

Key-value Stores and Relational Databases. Each
workload tests different parts of the protocol, typically
opening a database, and inserting enough data to trigger
checkpoints. The checkers check for atomicity, ordering,
and durability of transactions. We note here that GDBM
does not provide any crash guarantees, though we be-
lieve lay users will be affected by any loss of integrity.
Similarly, SQLite does not provide durability under the
default journal-mode (we became aware of this only af-
ter interacting with developers), but its documentation
seems misleading. We enable checksums on LevelDB.

Version Control Systems. Git’s crash guarantees are
fuzzy; mailing-list discussions suggest that Git expects a
fully-ordered file system [27]. Mercurial does not pro-
vide any guarantees, but does provide a plethora of man-
ual recovery techniques. Our workloads add two files to
the repository and then commit them. The checker uses
commands like git-log, git-fsck, and git-commit

to verify repository state, checking the integrity of the
repository and the durability of the workload commands.
The checkers remove any leftover lock files, and perform
recovery techniques that do not discard committed data
or require previous backups.

Virtualization and Distributed Systems. The
VMWare Player workload issues writes and flushes from
within the guest; the checker repairs the virtual disk
and verifies that flushed writes are durable. HDFS is
configured with replicated metadata and restore enabled.
HDFS and ZooKeeper workloads create a new directory
hierarchy; the checker tests that files created before the
crash exist. In ZooKeeper, the checker also verifies that
quota and ACL modifications are consistent.

If ALICE finds a vulnerability related to a system call,
it does not search for other vulnerabilities related to the
same call. If the system call is involved in multiple, log-
ically separate vulnerabilities, this has the effect of hid-
ing some of the vulnerabilities. Most tested applications,
however, have distinct, independent sets of failures (e.g.,
dirstate and repository corruption in Mercurial, consis-
tency and durability violation in other applications). We
use different checkers for each type of failure, and report
vulnerabilities for each checker separately.

Summary. If application invariants for the tested con-
figuration are explicitly and conspicuously documented,
we consider violating those invariants as failure; other-
wise, our checkers consider violating a lay user’s expec-
tations as failure. We are careful about any recovery
procedures that need to be followed on a system crash.
Space constraints here limit exact descriptions of the
checkers; we provide more details in our webpage [2].

4.2 Overview
We now discuss the logical protocols of the applications
examined. Figure 4 visually represents the update proto-
cols, showing the logical operations in the protocol (or-
ganized as modules) and discovered vulnerabilities.

4.2.1 Databases and Key-Value Stores
Most databases use a variant of write-ahead logging.
First, the new data is written to a log. Then, the log is
checkpointed or compacted, i.e., the actual database is
usually overwritten, and the log is deleted.

Figure 4(A) shows the protocol used by LevelDB-
1.15. LevelDB adds inserted key-value pairs to the log
until it reaches a threshold, and then switches to a new
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creat(x.ldb)
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{? x

(A)(i) LevelDB compaction

creat(new.log)
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stdout(done)

(A)(ii) LevelDB insert

write(mdb file)

append(mdb file)

fdatasync(mdb file)

[write(mdb file)]
file sync range(mdb file)

(B) LMDB
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fsync(tmp)2

[unlink(props)]3
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(D)(i) HSQLDB
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[append(log)]
N x fsync(log)
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(D)(ii) HSQLDB
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write(pg xlog)

fdatasync(pg xlog)

write(pg clog)

fdatasync(pg clog)
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[write(pg control)]
fsync(pg control)

(E) Postgres
checkpoint

creat(journal)

N x append(journal)

fsync(journal)

fsync(parent-dir)

write(journal)

fsync(journal)

write(db)

fsync(db)

unlink(journal)

stdout(done)

(F) SQLite

mkdir(o/x)0
creat(o/x/tmp y)1

N x append(o/x/tmp y)2
fsync(o/x/tmp y)3

link(o/x/tmp y, o/x/y)4
unlink(o/x/tmp y)5

(G)(i) Git store object

creat(index.lock)

N x (i) store object

append(index.lock)

[rename(index.lock, index)]
stdout(finished add)

N x (i) store object

creat(branch.lock)

append(branch.lock)

append(branch.lock)

append(logs/branch)

append(logs/HEAD)

rename(branch.lock, x/branch)

stdout(finished commit)

(i)0,(i)4
(i)0,(i)4

(i)
0,

(i)
4

(G)(ii) Git add commit

creat(tmp)

append(tmp)

[rename(tmp, dirstate)]
(H)(i) Mercurial update dirstate

...
creat(journal)

creat(filelog)

[append(journal)]
N x append(filelog)

...
[append(journal)]
[append(manifest)]
[append(journal)]
append(changelog)

rename(journal, undo)
...

creat(tmp)

append(tmp)

[rename(tmp, fncache)]...
update dirstate

...

{N x

(H)(ii) Mercurial commit

creat(tmp)

append(tmp)

fsync(tmp)

[rename(tmp, x.vmdk)]
write(x-split1)

fsync region(x-split1){N x

(I) VMWare write-flush

....
creat(tmp)

append(tmp)

[rename(tmp, seen txid)]
creat(ckpt)

append(ckpt)

fsync(ckpt)

creat(md5.tmp)

N x append(md5.tmp)

fsync(md5.tmp)

rename(md5.tmp, md5)

rename(ckpt, fsimage)
....

(J) HDFS update

mkdir(v)

creat(v/log)

append(v/log)

trunc(v/log)

append(v/log)

[write(v/log)]
? x write(v/log)

? x write(v/log)

fdatasync(v/log)

stdout(done)

’’

{? x

(K) ZooKeeper

Legend
Safe flush, rename

Other ordering

Atomicity[ ]

Figure 4: Protocol Diagrams. The diagram shows the modularized update protocol for all applications. For applications with more than
one configuration (or versions), only a single configuration is shown (SQLite: Rollback, LevelDB: 1.15). Uninteresting parts of the protocol and
a few vulnerabilities (similar to those already shown) are omitted. Repeated operations in a protocol are shown as ‘N ×’ next to the operation,
and portions of the protocol executed conditionally are shown as ‘? ×’. Blue-colored text simply highlights such annotations and sync calls.
Ordering and durability dependencies are indicated with arrows, and dependencies between modules are indicated by the numbers on the arrows,
corresponding to line numbers in modules. Durability dependency arrows end in an stdout micro-op; additionally, the two dependencies marked
with * in HSQLDB are also durability dependencies. Dotted arrows correspond to safe rename or safe file flush vulnerabilities discussed in
Section 4.4. Operations inside brackets must be persisted together atomically.

9



log; during the switch, a background thread starts com-
pacting the old log file. Figure 4(A)(i) shows the com-
paction; Figure 4(A)(ii) shows the appends to the log file.
During compaction, LevelDB first writes data to a new
ldb file, updates pointers to point to the new file (by ap-
pending to a manifest), and then deletes the old log file.

In LevelDB, we find vulnerabilities occurring while
appending to the log file. A crash can result in the ap-
pended portion of the file containing garbage; LevelDB’s
recovery code does not properly handle this situation,
and the user gets an error if trying to access the inserted
key-value pair (which should not exist in the database).
We also find some vulnerabilities occurring during com-
paction. For example, LevelDB does not explicitly per-
sist the directory entries of ldb files; a crash might cause
the files to vanish, resulting in unavailability.

Some databases follow protocols that are radically dif-
ferent from write-ahead logging. For example, LMDB
uses shadow-paging (copy-on-write). LMDB requires
that the final pointer update (106 bytes) in the copy-on-
write tree to be atomic. HSQLDB uses a combination of
write-ahead logging and update-via-rename, on the same
files, to maintain consistency. The update-via-rename
is performed by first separately unlinking the destina-
tion file, and then renaming; out-of-order persistence of
rename(), unlink(), or log creation causes problems.

4.2.2 Version Control Systems
Git and Mercurial maintain meta-information about their
repository in the form of logs. The Git protocol is il-
lustrated in Figure 4(G). Git stores information in the
form of object files, which are never modified; they are
created as temporary files, and then linked to their per-
manent file names. Git also maintains pointers in sepa-
rate files, which point to both the meta-information log
and the object files, and are updated using update-via-
rename. Mercurial, on the other hand, uses a journal to
maintain consistency, using update-via-rename only for
a few unimportant pieces of information.

We find many ordering dependencies in the Git proto-
col, as shown in Figure 4(G). This result is not surpris-
ing, since mailing-list discussions suggest Git developers
expect total ordering from the file system. We also find
a Git vulnerability involving atomicity across multiple
system calls; a pointer file being updated (via an append)
has to be persisted atomically with another file getting
updated (via an update-via-rename). In Mercurial, we
find many ordering vulnerabilities for the same reason,
not being designed to tolerate out-of-order persistence.

4.2.3 Virtualization and Distributed Systems
VMWare Player’s protocol is simple. VMWare main-
tains a static, constant mapping between blocks in the
virtual disk, and in the VMDK file (even for dynami-
cally allocated VMDK files); directly overwriting the VMDK

file maintains consistency (though VMWare does use
update-via-rename for some small files). Both HDFS and
ZooKeeper use write-ahead logging. Figure 4(K) shows
the ZooKeeper logging module. We find that ZooKeeper
does not explicitly persist directory entries of log files,
which can lead to lost data. ZooKeeper also requires
some log writes to be atomic.

4.3 Vulnerabilities Found
ALICE finds 60 static vulnerabilities in total, correspond-
ing to 156 dynamic vulnerabilities. Altogether, applica-
tions failed in more than 4000 crash states. Table 3(a)
shows the vulnerabilities classified by the affected per-
sistence property, and 3(b) shows the vulnerabilities clas-
sified by failure consequence. Table 3(b) also separates
out those vulnerabilities related only to user expectations
and not to documented guarantees, with an asterik (∗);
many of these correspond to applications for which we
could not find any documentation of guarantees.

The different journal-mode configurations provided by
SQLite use different protocols, and the different versions
of LevelDB differ on whether their protocols are de-
signed around the mmap() interface. Tables 3(a) and 3(b)
hence show these configurations of SQLite and LevelDB
separately. All other configurations (in all applications)
do not change the basic protocol, but vary on the appli-
cation invariants; among different configurations of the
same update protocol, all vulnerabilities are revealed in
the safest configuration. Table 3 and the rest of the paper
only show vulnerabilities we find in the safest configura-
tion, i.e., we do not count separately the same vulnerabil-
ities from different configurations of the same protocol.

We find many vulnerabilities have severe conse-
quences such as silent errors or data loss. Seven applica-
tions are affected by data loss, while two (both LevelDB
versions and HSQLDB) are affected by silent errors. The
cannot open failures include failure to start the server in
HDFS and ZooKeeper, while the failed reads and writes
include basic commands (e.g., git-log, git-commit)
failing in Git and Mercurial. A few cannot open fail-
ures and failed reads and writes might be solvable by
application experts, but we believe lay users would have
difficulty recovering from such failures (our checkers in-
voke standard recovery techniques). We also checked
if any discovered vulnerabilities are previously known,
or considered inconsequential. The single PostgreSQL
vulnerability is documented; it can be solved with non-
standard (although simple) recovery techniques. The sin-
gle LMDB vulnerability is discussed in a mailing list,
though there is no available workaround. All these pre-
viously known vulnerabilities are separated out in Ta-
ble 3(b) (†). The five dirstate fail vulnerabilities in Mer-
curial are shown separately, since they are less harmful
than other vulnerabilities (though frustrating to the lay
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Leveldb1.10 1‡ 1 1 2 1 3 1 10
Leveldb1.15 1 1 1 1 2 6
LMDB 1 1
GDBM 1 1 1 2 5
HSQLDB 1 2 1 3 2 1 10
Sqlite-Roll 1 1
Sqlite-WAL 0
PostgreSQL 1 1
Git 1 1 2 1 3 1 9
Mercurial 2 1 1 1 4 2 10
VMWare 1 1
HDFS 1 1 2
ZooKeeper 1 1 2 4
Total 6 4 3 9 6 3 18 5 7 60
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Leveldb1.10 1 1 5 4
Leveldb1.15 2 2 2
LMDB read-only open†

GDBM 2∗ 3∗

HSQLDB 2 3 5
Sqlite-Roll 1∗

Sqlite-WAL
PostgreSQL 1†

Git 1∗ 3∗ 5∗ 3#∗

Mercurial 2∗ 1∗ 6∗ 5 dirstate fail∗

VMWare 1∗

HDFS 2∗

ZooKeeper 2∗ 2∗

Total 5 12 25 17 9
(b) Failure Consequences.

Application ext3-w ext3-o ext3-j ext4-o btrfs
Leveldb1.10 3 1 1 2 4
Leveldb1.15 2 1 1 2 3
LMDB
GDBM 3 3 2 3 4
HSQLDB 4
Sqlite-Roll 1 1 1 1 1
Sqlite-WAL
PostgreSQL
Git 2 2 2 2 5
Mercurial 4 3 3 6 8
VMWare
HDFS 1
ZooKeeper 1 1 1 1
Total 16 12 10 17 31

(c) Under Current File Systems.

Ordering DOAGCA
ext3-w Dir ops and file-sizes ordered among

themselves, before sync operations.
X 4K ×

ext3-o Dir ops, appends, truncates ordered
among themselves. Overwrites be-
fore non-overwrites, all before sync.

X 4K X

ext3-j All operations are ordered. X 4K X
ext4-o Safe rename, safe file flush, dir ops

ordered among themselves
X 4K X

btrfs Safe rename, safe file flush X 4K X
(d) APMs considered.

Table 3: Vulnerabilities. (a) shows the discovered static vulnerabilities categorized by the type of persistence property. The number of
unique vulnerabilities for an application can be different from the sum of the categorized vulnerabilities, since the same source code lines can
exhibit different behavior. ‡ The atomicity vulnerability in Leveldb1.10 corresponds to multiple mmap() writes. (b) shows the number of static
vulnerabilities resulting in each type of failure. † Previously known failures, documented or discussed in mailing lists. ∗ Vulnerabilities relating
to unclear documentation or typical user expectations beyond application guarantees. # There are 2 fsck-only and 1 reflog-only errors in Git. (c)
shows the number of vulnerabilities that occur on current file systems (all applications are vulnerable under future file systems). (d) shows APMs
used for calculating Table (c). Legend: DO: directory operations atomicity. AG: granularity of size-atomicity. CA: Content-Atomicity.

user). Git’s fsck-only and reflog-only errors are poten-
tially dangerous, but do not seem to affect normal usage.

We interacted with the developers of eight applica-
tions, reporting a subset of the vulnerabilities we find.
Our interactions convince us that the vulnerabilities will
affect users if they are exposed. The other applications
(GDBM, Git, and Mercurial) were not designed to pro-
vide crash guarantees, although we believe their users
will be affected by the vulnerabilities found should an
untimely crash occur. Thus, the vulnerabilities will not
surprise a developer of these applications, and we did not
report them. We also did not report vulnerabilities con-
cerning partial renames (usually dismissed since they are
not commonly exposed), or documented vulnerabilities.

Developers have acted on five of the vulnerabilities
we find: one (LevelDB-1.10) is now fixed, another
(LevelDB-1.15) was fixed parallel to our discovery, and
three (HDFS, and two in ZooKeeper) are under consider-
ation. We have found that developers often dismiss other
vulnerabilities which do not (or are widely believed to
not) get exposed in current file systems, especially relat-
ing to out-of-order persistence of directory operations.
The fact that only certain operating systems allow an
fsync() on a directory is frequently referred to; both
HDFS and ZooKeeper respondents lament that such an
fsync() is not easily achievable with Java. The devel-
opers suggest the SQLite vulnerability is actually not a

behavior guaranteed by SQLite (specifically, that dura-
bility cannot be achieved under rollback journaling);
we believe the documentation is misleading.

Of the five acted-on vulnerabilities, three relate to not
explicitly issuing an fsync() on the parent directory af-
ter creating and calling fsync() on a file. However, not
issuing such an fsync() is perhaps more safe in mod-
ern file systems than out-of-order persistence of directory
operations. We believe the developers’ interest in fixing
this problem arises from the Linux documentation ex-
plicitly recommending an fsync() after creating a file.

Summary. ALICE detects 60 vulnerabilities in total,
with 5 resulting in silent failures, 12 in loss of durability,
25 leading to inaccessible applications, and 17 returning
errors while accessing certain data. ALICE is also able to
detect previously known vulnerabilities.

4.4 Common Patterns
We now examine vulnerabilities related with different
persistence properties. Since durability vulnerabilities
show a separate pattern, we consider them separately.

4.4.1 Atomicity across System Calls
Four applications (including both versions of LevelDB)
require atomicity across system calls. For three applica-
tions, the consequences seem minor: inaccessibility dur-
ing database creation in GDBM, dirstate corruption in
Mercurial, and an erratic reflog in Git. LevelDB’s vul-
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nerability has a non-minor consequence, but was fixed
immediately after introducing LevelDB-1.15 (when Lev-
elDB started using read()-write() instead of mmap()).

In general, we observe that this class of vulnerabilities
seems to affect applications less than other classes. This
result may arise because these vulnerabilities are easily
tested: they are exposed independent of the file system
(i.e, via process crashes), and are easier to reproduce.

4.4.2 Atomicity within System Calls
Append atomicity. Surprisingly, three applications re-
quire appends to be content-atomic: the appended por-
tion should contain actual data. The failure consequences
are severe, such as corrupted reads (HSQLDB), failed
reads (LevelDB-1.15) and repository corruption (Mercu-
rial). Filling the appended portion with zeros instead of
garbage still causes failure; only the current implemen-
tation of delayed allocation (where file size does not in-
crease until actual content is persisted) works. Most ap-
pends seemingly do not need to be block-atomic; only
Mercurial is affected, and the affected append also re-
quires content-atomicity.

Overwrite atomicity. LMDB, PostgreSQL, and
ZooKeeper require small writes (< 200 bytes) to be
atomic. Both the LMDB and PostgreSQL vulnerabilities
are previously known.

We do not find any multi-block overwrite vulnerabil-
ities, and even single-block overwrite requirements are
typically documented. This finding is in stark contrast
with append atomicity; some of the difference can be
attributed to the default APM (overwrites are content-
atomic), and to some workloads simply not using over-
writes. However, the major cause seems to be the basic
mechanism behind application update protocols: mod-
ifications are first logged, in some form, via appends;
logged data is then used to overwrite the actual data. Ap-
plications have careful mechanisms to detect and repair
failures in the actual data, but overlook the presence of
garbage content in the log.

Directory operation atomicity. Given that most file
systems provide atomic directory operations (§2.2), one
would expect that most applications would be vulnera-
ble to such operations not being atomic. However, we
do not find this to be the case for certain classes of ap-
plications. Databases and key-value stores do not em-
ploy atomic renames extensively; consequently, we ob-
serve non-atomic renames affecting only three of these
applications (GDBM, HSQLDB, LevelDB). Non-atomic
unlinks seemingly affect only HSQLDB (which uses un-
links for logically performing renames), and we did not
find any application affected by non-atomic truncates.

4.4.3 Ordering between System Calls
Applications are extremely vulnerable to system calls be-
ing persisted out of order; we find 27 vulnerabilities.

Safe renames. On file systems with delayed alloca-
tion, a common heuristic to prevent data loss is to persist
all data (including appends and truncates) of a file before
subsequent renames of the file [14]. We find that this
heuristic only matches (and thus fixes) three discovered
vulnerabilities, one each in Git, Mercurial, and LevelDB-
1.10. A related heuristic, where updating existing files
by opening them with O TRUNC flushes the updated data
while issuing a close(), does not affect any of the vul-
nerabilities we discovered. Also, the effect of the heuris-
tics varies with minor details: if the safe-rename heuris-
tic does not persist file truncates, only two vulnerabilities
will be fixed; if the O TRUNC heuristic also acts on new
files, an additional vulnerability will be fixed.

Safe file flush. An fsync() on a file does not guaran-
tee that the file’s directory entry is also persisted. Most
file systems, however, persist directory entries that the
file is dependent on (e,g., directory entries of the file and
its parent). We found that this behavior is required by
three applications for maintaining basic consistency.

4.4.4 Durability
We find vulnerabilities in seven applications resulting in
durability loss. Of these, only two applications (GDBM
and Mercurial) are affected because an fsync() is not
called on a file. Six applications require fsync() calls
on directories: three are affected by safe file flush dis-
cussed previously, while four (HSQLDB, SQLite, Git,
and Mercurial) require other fsync() calls on directo-
ries. As a special case, with HSQLDB, previously com-
mitted data is lost, rather than data that was being com-
mitted during the time of the workload. In all, only
four out of the twelve vulnerabilities are exposed when
full ordering is promised: many applications do issue an
fsync() call before durability is essential, but do not
fsync() all the required information.

4.4.5 Summary
We believe our study offers several insights for file-
system designers. Future file systems should consider
providing ordering between system calls, and atomic-
ity within a system call in specific cases. Vulnerabili-
ties involving atomicity of multiple system calls seem to
have minor consequences. Requiring applications to sep-
arately flush the directory entry of a created and flushed
file can often result in application failures. For durability,
most applications seem to explicitly flush some, but not
all, of the required information; thus, providing ordering
among system calls can also help durability.

4.5 Impact on Current File Systems
Our study thus far has utilized an abstract (and weak) file
system model (i.e., APM) in order to discover the broad-
est number of vulnerabilities. We now utilize specific
file-system APMs to understand how modern protocols
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would function atop a range of modern file systems and
configurations. Specifically, we focus on Linux ext3 (in-
cluding writeback, ordered, and data-journaling mode),
Linux ext4, and btrfs. The considered APMs are based
on our understanding of file systems from Section 2.

Table 3(c) shows the vulnerabilities reported by
ALICE, while 3(d) shows the considered APMs. We
make a number of observations based on Table 3(c).
First, a significant number of vulnerabilities are exposed
on all examined file systems. Second, ext3 with jour-
naled data is the safest: the only vulnerabilities exposed
relate to atomicity across system calls, and a few dura-
bility vulnerabilities. Third, a large number of vulner-
abilities are exposed on btrfs as it aggressively persists
operations out of order [11]. Fourth, some applications
show no vulnerabilities on any considered APM; thus,
the flaws we found in such applications do not manifest
on today’s file systems (but may do so on future systems).

Summary. Application vulnerabilities are exposed on
many current file systems. The vulnerabilities exposed
vary based on the file system, and thus testing applica-
tions on only a few file systems does not work.

4.6 Evaluating New File-System Designs
File-system modifications for improving performance
have introduced wide-spread data loss in the past [14],
because of changes to the file-system persistence proper-
ties. ALICE can be used to test whether such modifica-
tions break correctness of existing applications. We now
describe how we use ALICE to evaluate a hypothetical
variant of ext3 (data-journaling mode), ext3-fast.

Our study shows that ext3 (data-journaling mode) is
the safest file system; however, it offers poor perfor-
mance for many workloads [35]. Specifically, fsync()
latency is extremely high as ext3 persists all previous op-
erations on fsync(). One way to reduce fsync() la-
tency would be to modify ext3 to persist only the synced
file. However, other file systems (e.g,. btrfs) that have
attempted to reduce fsync() latency [13] have resulted
in increased vulnerabilities. Our study suggests a way to
reduce latency without exposing more vulnerabilities.

Based on our study, we hypothesize that data that is
not synced need not be persisted before explicitly synced
data for correctness; such data must only be persisted
in-order amongst itself. We design ext3-fast to reflect
this: fsync() on a file A persists only A, while other
dirty data and files are still persisted in-order.

We modeled ext3-fast in ALICE by slightly changing
the APM of ext3 data journaling mode, so that synced
directories, files, and their data, depend only on previous
syncs and operations necessary for the file to exist (i.e.,
safe file flush is obeyed). The operations on a synced file
are also ordered among themselves.

We test our hypothesis with ALICE; the observed or-

dering vulnerabilities (of the studied applications) are not
exposed under ext3-fast. The design was not meant to fix
durability or atomicity across system calls vulnerabili-
ties, so those vulnerabilities are still reported by ALICE.

We estimate the performance gain of ext3-fast using
the following experiment: we first write 250 MB to
file A, then append a byte to file B and fsync() B.
When both files are on the same ext3-ordered file system,
fsync() takes about four seconds. If the files belong to
different partitions on the same disk, mimicking the be-
havior of ext3-fast, the fsync() takes only 40 ms. The
first case is 100 times slower because 250 MB of data is
ordered before the single byte that needs to be persistent.

Summary. The ext3-fast file system (derived from in-
ferences provided by ALICE) seems interesting for appli-
cation safety, though further investigation is required into
the validity of its design. We believe that the ease of use
offered by ALICE will allow it to be incorporated into the
design process of new file systems.

4.7 Discussion
We now consider why crash vulnerabilities occur com-
monly even among widely used applications. We find
that application update protocols are complex and hard to
isolate and understand. Many protocols are layered and
spread over multiple files. Modules are also associated
with other complex functionality (e.g., ensuring thread
isolation). This complexity leads to issues that are obvi-
ous with a bird’s eye view of the protocol: for example,
HSQLDB’s protocol has 3 consecutive fsync() calls to
the same file (increasing latency). ALICE helps solve this
problem by making it easy to obtain logical representa-
tions of update protocols as shown in Figure 4.

Another factor contributing to crash vulnerabilities is
poorly written, untested recovery code. In LevelDB, we
find vulnerabilities that should be prevented by correct
implementations of the documented update protocols.
Some recovery code is non-optimal: potentially recover-
able data is lost in several applications (e.g., HSQLDB,
Git). Mercurial and LevelDB provide utilities to verify
or recover application data; we find these utilities hard to
configure and error-prone. For example, an user invok-
ing LevelDB’s recovery command can unintentionally
end up further corrupting the datastore, and be affected
by (seemingly) unrelated configuration options (para-
noid checksums). We believe these problems are a direct
consequence of the recovery code being infrequently ex-
ecuted and insufficiently tested. With ALICE, recovery
code can be tested on many corner cases.

Convincing developers about crash vulnerabilities is
sometimes hard: there is a general mistrust surrounding
such bug reports. Usually, developers are suspicious that
the underlying storage stack might not respect fsync()
calls [36], or that the drive might be corrupt. We hence
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believe that most vulnerabilities that occur in the wild are
associated with an incorrect root cause, or go unreported.
ALICE can be used to easily reproduce vulnerabilities.

Unclear documentation of application guarantees con-
tributes to the confusion about crash vulnerabilities. Dur-
ing discussions with developers about durability vulner-
abilities, we found that SQLite, which proclaims itself
as fully ACID-complaint, does not provide durability
(even optionally) with the default storage engine, though
the documentation suggests it does. Similarly, GDBM’s
GDBM SYNC flag does not ensure durability. Users can
employ ALICE to determine guarantees directly from the
code, bypassing the problem of bad documentation.

5 Related Work
Our previous workshop paper [47] identifies the prob-
lem of application-level consistency depending upon file-
system behavior, but is limited to two applications and
does not use automated testing frameworks. Since we
use ALICE to obtain results, our current study includes a
greater number and variety of applications.

This paper adapts ideas from past work on dynamic
program analysis and model checking. EXPLODE [53]
has a similar flavor to our work: the authors use in-
situ model checking to find crash vulnerabilities on dif-
ferent storage stacks. ALICE differs from EXPLODE in
four significant ways. First, EXPLODE requires the target
storage stack to be fully implemented; ALICE only re-
quires a model of the target storage stack, and can there-
fore be used to evaluate application-level consistency on
top of proposed storage stacks, while they are still at
the design stage. Second, EXPLODE requires the user to
carefully annotate complex file systems using choose()
calls; ALICE requires the user to only specify a high-
level APM. Third, EXPLODE reconstructs crash states by
tracking I/O as it moves from the application to the stor-
age. Although it is possible to use EXPLODE to deter-
mine the root cause of a vulnerability, we believe it is
easier to do so using ALICE since ALICE checks for vi-
olation of specific persistence properties. Fourth, EX-
PLODE stops at finding crash vulnerabilities; by helping
produce protocol diagrams, ALICE contributes to under-
standing the protocol itself. Like BOB, EXPLODE can be
used to test persistence properties; however, while BOB

only re-orders block I/O, EXPLODE can test re-orderings
caused at different layers in the storage stack.

Zheng et al. [54] find crash vulnerabilities in
databases. They contribute a standard set of workloads
that stress databases (particularly, with multiple threads),
and check ACID properties; the workloads and checkers
can be used with ALICE. Unlike our work, Zheng et al.
do not systematically explore vulnerabilities of each sys-
tem call; they are limited by the re-orderings and non-
atomicity exhibited by a particular (implemented) file

system during a single workload execution. Thus, their
work is more suited for finding those vulnerabilities that
are commonly exposed under a given file system.

Woodpecker [15] can be used to find crash vulnerabil-
ities when supplied with suspicious source code patterns
to guide symbolic execution. Our work is fundamentally
different to this approach, as ALICE does not require prior
knowledge of patterns in checked applications.

Our work is influenced by SQLite’s internal testing
tool [43]. The tool works at an internal wrapper layer
within SQLite, and is not helpful for generic testing.

RACEPRO [25], a testing tool for concurrency bugs,
records system calls and replays them by splitting them
into small operations, but does not test crash consistency.

OptFS [9], Featherstitch [16], and transactional file
systems [17, 39, 42], discuss new file-system interfaces
that will affect vulnerabilities. Our study can help inform
the design of new interfaces by providing clear insights
into what is missing in today’s interfaces.

6 Conclusion
In this paper, we show how application-level consistency
is dangerously dependent upon file system persistence
properties, i.e., how file systems persist system calls.
We develop BOB, a tool to test persistence properties
and show that such properties vary widely among file
systems. We build ALICE, a framework that analyzes
application-level protocols and detects crash vulnerabil-
ities. We analyze 11 applications, and find 60 vulner-
abilities, some of which result in severe consequences
like corruption or data loss. We present several insights
derived from our study. The ALICE tool, and detailed de-
scriptions of the vulnerabilities found in our study, can
be obtained from our webpage [2].
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