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F
or our second article in the Research for Practice 
reboot, we asked Ram Alagappan, an Assistant 
Professor at the University of Illinois Urbana 
Champaign, to survey recent research on crash 
consistency—the guarantee that application data 

will survive system crashes. Unlike memory consistency, 
crash consistency is an end-to-end concern, requiring 
not only that the lower levels of the system (e.g., the file 
system) are implemented correctly, but also that their 
interfaces are used correctly by applications. 

Alagappan has chosen a collection of papers that 
reflects this complexity, traversing the stack from 
applications all the way to hardware. The first paper 
focuses on the filesystem—upon which applications 
that hope to provide crash consistency must rely—and 
uses bug-finding techniques to witness violations of 
interface-level guarantees. The second moves up the 
stack, rethinking the interfaces that file systems provide to 
application programmers to make it easier to write crash-
consistent programs. In the last, the plot thickens with the 
new challenges that persistent memory brings to crash 
consistency. It explores how to mitigate those challenges 
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using cache-coherent accelerators. I learned a lot reading 
these selections, and I am sure that you will too.

—Peter Alvaro

RESEARCH FOR PRACTICE: CRASH CONSISTENCY
RAM ALAGAPPAN

A critical challenge that storage systems face is how 
to update persistent data correctly despite system 

crashes (caused by a power loss or kernel bugs). At a high 
level, the problem is that the system may crash at any time 
when it is in the middle of updating its persistent structures, 
leaving the data in an inconsistent state. A storage system 
is deemed crash-consistent if it can recover the persistent 
data it stores to a meaningful state after crashes.

Crash consistency is of paramount importance for two 
main reasons: 
3  First, system crashes are inevitable. Even well-managed 

data centers suffer from occasional power-loss events; 
further, increasing software complexity means more 
bugs and, thus, crashes. As a result, every storage 
system, including local file systems, storage applications 
that run atop them, and persistent-memory programs, 
must ensure crash consistency. 

3  Second, crash consistency is critical from a user and 
application perspective. A storage system that can lose 
or corrupt data upon a crash can be disastrous, leading 
to a loss of trust and millions of dollars in revenue.
Achieving crash consistency is challenging. Storage 

systems usually execute a carefully crafted sequence of 
modifications to ensure that they can safely move from 
one consistent state to another, despite crashes. Doing so 
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correctly, however, is full of nuance and challenging even 
for seasoned programmers. 

This article discusses three ways the systems research 
community strives to improve the state of affairs: finding 
and fixing crash-consistency bugs; developing new 
abstractions that ease crash consistency; and exploiting 
new hardware to implement crash consistency. I have 
chosen papers in each of these categories. By no means 
are these the only papers or even the general ways that 
improve crash consistency, but they do provide a good 
overview of the problem and solution space.

FINDING AND FIXING CRASH-CONSISTENCY BUGS
Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, 
Pandian Raju, Vijay Chidambaram. Finding Crash-
consistency Bugs with Bounded Black-Box Crash Testing. 
Proceedings of the 13th Unix Symposium on Operating 
Systems Design and Implementation (OSDI 2018).
https://www.usenix.org/system/files/osdi18-mohan.pdf

Perhaps the most pragmatic way to improve crash 
consistency of storage systems is to find bugs in 

crash-consistency code and fix them. This paper by Mohan 
et al. finds crash-consistency bugs in local file systems, 
the building block of many storage systems. A file system 
is crash-consistent if it can safely recover its internal 
metadata (such as inodes and bitmaps) and user data that 
was explicitly persisted (using fsync or similar operations) 
after a crash.

One challenge in testing file systems for crash 
consistency is that there are innumerable workloads, and 
crashes can occur at any point during the workload. A 
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testing approach that exhaustively explores this search 
space is impractical. This paper addresses the problem 
by first studying existing crash-consistency bugs in 
file systems. A key observation from the study is that 
workloads with just three or fewer file-system operations 
can trigger most crash-consistency bugs. 

The authors also realize that it is sufficient to inject 
crashes only after persistent points (i.e., operations such 
as fsync that explicitly persist data). This choice makes 
the correctness criterion very clear: While there are no 
guarantees for updates that are not explicitly persisted, 
ones that have been persisted (via fsync or similar 
operations) must be safe. While this strategy does not 
guarantee finding all bugs, it offers a practical way to 
expose serious ones, making the approach useful.

The authors devise testing tools based on these insights 
and apply the tools to many file systems. One neat aspect 
of these tools is that they work in a black-box fashion: No 
file-system code modification is required for testing, so 
they readily apply to many file systems. The results show 
that even popular file systems can lose persisted data in 
the event of a crash. For example, Btrfs can lose a renamed 
file after a crash. The existence of such severe bugs in 
mature systems shows how building crash-consistent 
systems is a challenging task. Fortunately, fixing the bugs 
once they are found is often fairly straightforward. For 
example, file-system developers were able to fix some of 
the bugs found by the authors’ testing tools.

BETTER ABSTRACTIONS TO EASE CRASH CONSISTENCY
Thanumalayan Sankaranarayana Pillai, Ramnatthan 
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Alagappan, Lanyue Lu, Vijay Chidambaram, Andrea C. 
Arpaci-Dusseau, Remzi H. Arpaci-Dusseau. Application 
Crash Consistency and Performance with CCFS. 
Proceedings of the 15th Usenix Conference on File  
and Storage Technology (FAST 2017). https://www.usenix.
org/system/files/conference/fast17/fast17_pillai.pdf

While file systems implement mechanisms to 
keep their internal metadata crash-safe, they 

do little to protect application data. Applications, thus, 
do so on their own by modifying their data via a carefully 
implemented update protocol (a sequence of system calls 
such as writes, fsyncs, and renames). Unfortunately, while 
the high-level ideas to construct such protocols (e.g., 
write-ahead logging) are well understood, implementing 
them in a crash-consistent manner on modern file systems 
is surprisingly hard.

The problem is that the exact semantics of how the file 
system will persist the issued operations is underspecified. 
Specifically, file systems may reorder operations for 
efficiency reasons; thus, when the system recovers from 
a crash, a later write may have reached the disk before an 
earlier one. As a result, applications must reason about all 
possible reordered on-disk states after a crash, an arduous 
task even for experienced programmers. 

With just a moderately complex update protocol, 
developers must manually reason about a multitude of 
states. One way to avoid reordering would be to persist the 
system calls in the application-issued order. Forcing every 
operation synchronously to the storage is prohibitively 
expensive, however.
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This paper introduces a new abstraction called streams 
to ease the construction of crash-consistent update 
protocols without any performance penalty. The key 
idea is that writes within a stream are always persisted 
in the issued order, obviating the need to reason about 
reordering in the recovery protocol. Writes from different 
streams can be reordered, however, a fact that file-
system implementations can exploit to realize higher 
performance. Applications can take advantage of the 
stream abstraction with little code modification: They just 
need to issue one system call setstream at the beginning. 
All updates issued in the established stream will then be 
persisted in order to storage.

CCFS (Crash-consistent File System) implements 
the stream abstraction. It also implements new 
mechanisms to avoid false dependencies across streams. 
Several applications—such as Git, LevelDB, and Apache 
ZooKeeper—are crash-consistent on CCFS, but they can 
lose or corrupt data when run on ext4, the journaling 
file system for Linux. Further, CCFS approximates the 
performance of the reordering ext4 file system. Overall, 
this paper shows that a new file-system abstraction and 
a careful implementation can ease crash consistency for 
applications without forgoing performance.

EXPLOITING EMERGING HARDWARE
TO IMPLEMENT CRASH CONSISTENCY
Ankit Bhardwaj, Todd Thornley, Vinita Pawar, Reto 
Achermann, Gerd Zellweger, Ryan Stutsman. Cache-
coherent Accelerators for Persistent Memory Crash 
Consistency. Proceedings of the 14th ACM Workshop on 
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Hot Topics in Storage and File Systems (HotStorage 2022).
https://dl.acm.org/doi/pdf/10.1145/3538643.3539752

PM (persistent memory) offers an interface and 
performance similar to that of DRAM (dynamic 

random-access memory). It can be accessed via load and 
store instructions, and its performance can approximate 
DRAM’s performance. Unlike DRAM, however, PM is 
nonvolatile: Data stored on PM can be recovered after a 
crash. Thus, persistent structures on PM must be updated 
in a crash-consistent manner. Emerging accelerators 
connected over a cache-coherent link (e.g., CXL) can offer a 
new way to implement (black-box) crash consistency for PM.

Most existing PM systems ensure crash consistency 
through WAL (write-ahead logging). Sometimes the 
developers handcraft the WAL protocol; other times, it is 
automated via a compiler pass or software library such 
as Intel’s PMDK (Persistent Memory Development Kit) to 
log all PM stores. In either case, logging imposes overhead 
because of the extra log writes and ordering constraints 
(via instructions to use the hardware caches). Sometimes 
such update tracking and logging can also be done by the 
hardware (using write protection). This approach incurs 
huge trap overheads, however, and updates can be tracked 
only at page granularity.

This paper observes that PM updates can be interposed 
and logged with low overhead using cache-coherent 
accelerators. It envisions a system that works (at a high 
level) as follows. A PAX (persistence accelerator device) 
with persistent memory is attached via a cache-coherent 
interconnect to the host. A process can map and access 
this memory using regular load and store instructions. 
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The device, however, intercepts requests for cache lines 
from the CPU. Loads are simply proxied to the PM on the 
device. Stores are more interesting because the device 
needs to ensure crash consistency upon stores. Upon a 
store, the device gets a message from the host CPU about 
which cache line will be modified. This allows the device 
to perform undo logging; in particular, the device fetches 
the old version (of the cache line being modified) from PM 
and logs the address and old value. If a crash occurs, the 
undo log can be used to roll back to the old (consistent) 
version. The proposed design reduces logging costs using 
asynchronous log writes and grouping updates.

This approach offers two main advantages: First, it 
imposes low overhead (e.g., no traps, tracking at cache-
line granularity); second, it provides a black-box way 
to transform a volatile data structure into its crash-
consistent persistent counterpart with no code changes. 

Overall, this is a new and exciting direction in realizing 
crash consistency in PM devices. More broadly, this paper 
provides a glimpse into how emerging hardware can be 
exploited to implement storage functionality.

CONCLUSIONS
Keeping data safe in the presence of crashes is a 
fundamental problem in storage systems. Although the 
high-level ideas for crash consistency are relatively well 
understood, realizing them in practice is surprisingly 
complex and full of challenges. The systems research 
community is actively working on solving this challenge, 
and the papers examined here offer three solutions. 

Another promising approach that is getting traction in 
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the systems community is to use software verification to 
prove crash consistency. This approach is particularly well 
suited for new storage systems built from scratch. It would 
be interesting to see which of these approaches—or a 
combination of them—would be widely adopted in practice.
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