
acmqueue | july-august 2022 107

research for practiceRRFPP

F
or our second article in the Research for Practice
reboot, we asked Ram Alagappan, an Assistant
Professor at the University of Illinois Urbana
Champaign, to survey recent research on crash
consistency—the guarantee that application data

will survive system crashes. Unlike memory consistency,
crash consistency is an end-to-end concern, requiring
not only that the lower levels of the system (e.g., the file
system) are implemented correctly, but also that their
interfaces are used correctly by applications.

Alagappan has chosen a collection of papers that
reflects this complexity, traversing the stack from
applications all the way to hardware. The first paper
focuses on the filesystem—upon which applications
that hope to provide crash consistency must rely—and
uses bug-finding techniques to witness violations of
interface-level guarantees. The second moves up the
stack, rethinking the interfaces that file systems provide to
application programmers to make it easier to write crash-
consistent programs. In the last, the plot thickens with the
new challenges that persistent memory brings to crash
consistency. It explores how to mitigate those challenges

Keeping data
safe in the
presence of
crashes is a
fundamental
problem.

RAM ALAGAPPAN, WITH INTRODUCTION BY PETER ALVARO

1 of 9
TEXT
ONLY

Crash Consistency

RRFPP

Research for Practice
combines the resources

of the ACM Digital
Library, the largest

collection of computer
science research in the

world, with the expertise
of the ACM membership.

Research for Practice
columns have a common

goal of sharing the joy
and utility of reading

computer science
research between

academics and their
counterparts in industry.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3561654&domain=pdf&date_stamp=2022-09-15

acmqueue | july-august 2022 108

research for practiceRRFPP

using cache-coherent accelerators. I learned a lot reading
these selections, and I am sure that you will too.

—Peter Alvaro

RESEARCH FOR PRACTICE: CRASH CONSISTENCY
RAM ALAGAPPAN

A critical challenge that storage systems face is how
to update persistent data correctly despite system

crashes (caused by a power loss or kernel bugs). At a high
level, the problem is that the system may crash at any time
when it is in the middle of updating its persistent structures,
leaving the data in an inconsistent state. A storage system
is deemed crash-consistent if it can recover the persistent
data it stores to a meaningful state after crashes.

Crash consistency is of paramount importance for two
main reasons:
3 First, system crashes are inevitable. Even well-managed

data centers suffer from occasional power-loss events;
further, increasing software complexity means more
bugs and, thus, crashes. As a result, every storage
system, including local file systems, storage applications
that run atop them, and persistent-memory programs,
must ensure crash consistency.

3 Second, crash consistency is critical from a user and
application perspective. A storage system that can lose
or corrupt data upon a crash can be disastrous, leading
to a loss of trust and millions of dollars in revenue.
Achieving crash consistency is challenging. Storage

systems usually execute a carefully crafted sequence of
modifications to ensure that they can safely move from
one consistent state to another, despite crashes. Doing so

2 of 9

acmqueue | july-august 2022 109

research for practiceRRFPP

correctly, however, is full of nuance and challenging even
for seasoned programmers.

This article discusses three ways the systems research
community strives to improve the state of affairs: finding
and fixing crash-consistency bugs; developing new
abstractions that ease crash consistency; and exploiting
new hardware to implement crash consistency. I have
chosen papers in each of these categories. By no means
are these the only papers or even the general ways that
improve crash consistency, but they do provide a good
overview of the problem and solution space.

FINDING AND FIXING CRASH-CONSISTENCY BUGS
Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli,
Pandian Raju, Vijay Chidambaram. Finding Crash-
consistency Bugs with Bounded Black-Box Crash Testing.
Proceedings of the 13th Unix Symposium on Operating
Systems Design and Implementation (OSDI 2018).
https://www.usenix.org/system/files/osdi18-mohan.pdf

Perhaps the most pragmatic way to improve crash
consistency of storage systems is to find bugs in

crash-consistency code and fix them. This paper by Mohan
et al. finds crash-consistency bugs in local file systems,
the building block of many storage systems. A file system
is crash-consistent if it can safely recover its internal
metadata (such as inodes and bitmaps) and user data that
was explicitly persisted (using fsync or similar operations)
after a crash.

One challenge in testing file systems for crash
consistency is that there are innumerable workloads, and
crashes can occur at any point during the workload. A

3 of 9

https://www.usenix.org/system/files/osdi18-mohan.pdf

acmqueue | july-august 2022 110

research for practiceRRFPP

testing approach that exhaustively explores this search
space is impractical. This paper addresses the problem
by first studying existing crash-consistency bugs in
file systems. A key observation from the study is that
workloads with just three or fewer file-system operations
can trigger most crash-consistency bugs.

The authors also realize that it is sufficient to inject
crashes only after persistent points (i.e., operations such
as fsync that explicitly persist data). This choice makes
the correctness criterion very clear: While there are no
guarantees for updates that are not explicitly persisted,
ones that have been persisted (via fsync or similar
operations) must be safe. While this strategy does not
guarantee finding all bugs, it offers a practical way to
expose serious ones, making the approach useful.

The authors devise testing tools based on these insights
and apply the tools to many file systems. One neat aspect
of these tools is that they work in a black-box fashion: No
file-system code modification is required for testing, so
they readily apply to many file systems. The results show
that even popular file systems can lose persisted data in
the event of a crash. For example, Btrfs can lose a renamed
file after a crash. The existence of such severe bugs in
mature systems shows how building crash-consistent
systems is a challenging task. Fortunately, fixing the bugs
once they are found is often fairly straightforward. For
example, file-system developers were able to fix some of
the bugs found by the authors’ testing tools.

BETTER ABSTRACTIONS TO EASE CRASH CONSISTENCY
Thanumalayan Sankaranarayana Pillai, Ramnatthan

4 of 9

acmqueue | july-august 2022 111

research for practiceRRFPP

Alagappan, Lanyue Lu, Vijay Chidambaram, Andrea C.
Arpaci-Dusseau, Remzi H. Arpaci-Dusseau. Application
Crash Consistency and Performance with CCFS.
Proceedings of the 15th Usenix Conference on File
and Storage Technology (FAST 2017). https://www.usenix.
org/system/files/conference/fast17/fast17_pillai.pdf

While file systems implement mechanisms to
keep their internal metadata crash-safe, they

do little to protect application data. Applications, thus,
do so on their own by modifying their data via a carefully
implemented update protocol (a sequence of system calls
such as writes, fsyncs, and renames). Unfortunately, while
the high-level ideas to construct such protocols (e.g.,
write-ahead logging) are well understood, implementing
them in a crash-consistent manner on modern file systems
is surprisingly hard.

The problem is that the exact semantics of how the file
system will persist the issued operations is underspecified.
Specifically, file systems may reorder operations for
efficiency reasons; thus, when the system recovers from
a crash, a later write may have reached the disk before an
earlier one. As a result, applications must reason about all
possible reordered on-disk states after a crash, an arduous
task even for experienced programmers.

With just a moderately complex update protocol,
developers must manually reason about a multitude of
states. One way to avoid reordering would be to persist the
system calls in the application-issued order. Forcing every
operation synchronously to the storage is prohibitively
expensive, however.

5 of 9

https://www.usenix.org/system/files/conference/fast17/fast17_pillai.pdf
https://www.usenix.org/system/files/conference/fast17/fast17_pillai.pdf

acmqueue | july-august 2022 112

research for practiceRRFPP

This paper introduces a new abstraction called streams
to ease the construction of crash-consistent update
protocols without any performance penalty. The key
idea is that writes within a stream are always persisted
in the issued order, obviating the need to reason about
reordering in the recovery protocol. Writes from different
streams can be reordered, however, a fact that file-
system implementations can exploit to realize higher
performance. Applications can take advantage of the
stream abstraction with little code modification: They just
need to issue one system call setstream at the beginning.
All updates issued in the established stream will then be
persisted in order to storage.

CCFS (Crash-consistent File System) implements
the stream abstraction. It also implements new
mechanisms to avoid false dependencies across streams.
Several applications—such as Git, LevelDB, and Apache
ZooKeeper—are crash-consistent on CCFS, but they can
lose or corrupt data when run on ext4, the journaling
file system for Linux. Further, CCFS approximates the
performance of the reordering ext4 file system. Overall,
this paper shows that a new file-system abstraction and
a careful implementation can ease crash consistency for
applications without forgoing performance.

EXPLOITING EMERGING HARDWARE
TO IMPLEMENT CRASH CONSISTENCY
Ankit Bhardwaj, Todd Thornley, Vinita Pawar, Reto
Achermann, Gerd Zellweger, Ryan Stutsman. Cache-
coherent Accelerators for Persistent Memory Crash
Consistency. Proceedings of the 14th ACM Workshop on

6 of 9

acmqueue | july-august 2022 113

research for practiceRRFPP

Hot Topics in Storage and File Systems (HotStorage 2022).
https://dl.acm.org/doi/pdf/10.1145/3538643.3539752

PM (persistent memory) offers an interface and
performance similar to that of DRAM (dynamic

random-access memory). It can be accessed via load and
store instructions, and its performance can approximate
DRAM’s performance. Unlike DRAM, however, PM is
nonvolatile: Data stored on PM can be recovered after a
crash. Thus, persistent structures on PM must be updated
in a crash-consistent manner. Emerging accelerators
connected over a cache-coherent link (e.g., CXL) can offer a
new way to implement (black-box) crash consistency for PM.

Most existing PM systems ensure crash consistency
through WAL (write-ahead logging). Sometimes the
developers handcraft the WAL protocol; other times, it is
automated via a compiler pass or software library such
as Intel’s PMDK (Persistent Memory Development Kit) to
log all PM stores. In either case, logging imposes overhead
because of the extra log writes and ordering constraints
(via instructions to use the hardware caches). Sometimes
such update tracking and logging can also be done by the
hardware (using write protection). This approach incurs
huge trap overheads, however, and updates can be tracked
only at page granularity.

This paper observes that PM updates can be interposed
and logged with low overhead using cache-coherent
accelerators. It envisions a system that works (at a high
level) as follows. A PAX (persistence accelerator device)
with persistent memory is attached via a cache-coherent
interconnect to the host. A process can map and access
this memory using regular load and store instructions.

7 of 9

https://dl.acm.org/doi/pdf/10.1145/3538643.3539752

acmqueue | july-august 2022 114

research for practiceRRFPP

The device, however, intercepts requests for cache lines
from the CPU. Loads are simply proxied to the PM on the
device. Stores are more interesting because the device
needs to ensure crash consistency upon stores. Upon a
store, the device gets a message from the host CPU about
which cache line will be modified. This allows the device
to perform undo logging; in particular, the device fetches
the old version (of the cache line being modified) from PM
and logs the address and old value. If a crash occurs, the
undo log can be used to roll back to the old (consistent)
version. The proposed design reduces logging costs using
asynchronous log writes and grouping updates.

This approach offers two main advantages: First, it
imposes low overhead (e.g., no traps, tracking at cache-
line granularity); second, it provides a black-box way
to transform a volatile data structure into its crash-
consistent persistent counterpart with no code changes.

Overall, this is a new and exciting direction in realizing
crash consistency in PM devices. More broadly, this paper
provides a glimpse into how emerging hardware can be
exploited to implement storage functionality.

CONCLUSIONS
Keeping data safe in the presence of crashes is a
fundamental problem in storage systems. Although the
high-level ideas for crash consistency are relatively well
understood, realizing them in practice is surprisingly
complex and full of challenges. The systems research
community is actively working on solving this challenge,
and the papers examined here offer three solutions.

Another promising approach that is getting traction in

8 of 9

acmqueue | july-august 2022 115

research for practiceRRFPP

the systems community is to use software verification to
prove crash consistency. This approach is particularly well
suited for new storage systems built from scratch. It would
be interesting to see which of these approaches—or a
combination of them—would be widely adopted in practice.

Peter Alvaro is an associate professor of computer science
at the University of California Santa Cruz, where he leads
the Disorderly Labs research group (disorderlylabs.github.
io). His research focuses on using data-centric languages
and analysis techniques to build and reason about data-
intensive distributed systems in order to make them scalable,
predictable, and robust to the failures and nondeterminism
endemic to large-scale distribution. He earned his Ph.D. at
UC Berkeley, where he studied with Joseph M. Hellerstein.
He is a recipient of the National Science Foundation Career
Award, Facebook Research Award, Usenix ATC 2020 Best
Presentation Award, SIGMOD 2021 Distinguished PC Award,
and UCSC Excellence in Teaching Award.

Ram Alagappan is an Assistant Professor at the University of
Illinois Urbana Champaign. He was previously a postdoctoral
researcher at VMware Research. He earned his Ph.D. working
with Professors Andrea Arpaci-Dusseau and Remzi Arpaci-
Dusseau at the University of Wisconsin - Madison. His
research interests include storage and distributed systems.
His work has been published at top systems venues and has
won three best-paper awards.
Copyright © 2022 held by owner/author. Publication rights licensed to ACM.

9 of 9

CONTENTS2

http://disorderlylabs.github.io/
http://disorderlylabs.github.io/

